Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juho Hokkanen is active.

Publication


Featured researches published by Juho Hokkanen.


Journal of Agricultural and Food Chemistry | 2009

Identification of phenolic compounds from lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.) and hybrid bilberry (Vaccinium x intermedium Ruthe L.) leaves.

Juho Hokkanen; Sampo Mattila; Laura Jaakola; Anna Maria Pirttilä; Ari Tolonen

Phenolic compounds from leaves of lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.), and the natural hybrid of bilberry and lingonberry (Vaccinium x intermedium Ruthe L., hybrid bilberry) were identified using LC/TOF-MS and LC/MS/MS after extraction from the plant material in methanol in an ultrasonicator. The phenolic profiles in the plants were compared using the LC/TOF-MS responses. This is the first thorough report of phenolic compounds in hybrid bilberry. In total, 51 different phenolic compounds were identified, including flavan-3-ols, proanthocyanidins, flavonols and their glycosides, and various phenolic acid conjugates. Of the identified compounds, 35 were detected in bilberry, 36 in lingonberry, and 46 in the hybrid. To our knowledge, seven compounds were previously unreported in Vaccinium genus and many of the compounds are reported for the first time from bilberry and lingonberry.


FEBS Journal | 2008

Octaketide‐producing type III polyketide synthase from Hypericum perforatum is expressed in dark glands accumulating hypericins

Katja Karppinen; Juho Hokkanen; Sampo Mattila; Peter Neubauer; Anja Hohtola

Hypericins are biologically active constituents of Hypericum perforatum (St John’s wort). It is likely that emodin anthrone, an anthraquinone precursor of hypericins, is biosynthesized via the polyketide pathway by type III polyketide synthase (PKS). A PKS from H. perforatum, HpPKS2, was investigated for its possible involvement in the biosynthesis of hypericins. Phylogenetic tree analysis revealed that HpPKS2 groups with functionally divergent non‐chalcone‐producing plant‐specific type III PKSs, but it is not particularly closely related to any of the currently known type III PKSs. A recombinant HpPKS2 expressed in Escherichia coli resulted in an enzyme of ∼ 43 kDa. The purified enzyme catalysed the condensation of acetyl‐CoA with two to seven malonyl‐CoA to yield tri‐ to octaketide products, including octaketides SEK4 and SEK4b, as well as heptaketide aloesone. Although HpPKS2 was found to have octaketide synthase activity, production of emodin anthrone, a supposed octaketide precursor of hypericins, was not detected. The enzyme also accepted isobutyryl‐CoA, benzoyl‐CoA and hexanoyl‐CoA as starter substrates producing a variety of tri‐ to heptaketide products. In situ RNA hybridization localized the HpPKS2 transcripts in H. perforatum leaf margins, flower petals and stamens, specifically in multicellular dark glands accumulating hypericins. Based on our results, HpPKS2 may have a role in the biosynthesis of hypericins in H. perforatum but some additional factors are possibly required for the production of emodin anthrone in vivo.


European Journal of Plant Pathology | 2009

Flavonoid biosynthesis and degradation play a role in early defence responses of bilberry (Vaccinium myrtillus) against biotic stress

Janne J. Koskimäki; Juho Hokkanen; Laura Jaakola; Marja Suorsa; Ari Tolonen; Sampo Mattila; Anna Maria Pirttilä; Anja Hohtola

Bilberry (Vaccinium myrtillus) represents one of the richest flavonoid sources among plants. Flavonoids play variable, species-dependent roles in plant defences. In bilberry, flavonoid metabolism is activated in response to solar radiation but not against mechanical injury. In this paper, the defence reaction and biosynthesis of phenolic compounds of bilberry was studied after infection by a fungal endophyte (Paraphaeosphaeria sp.) and a pathogen (Botrytis cinerea). The defence response of bilberry was faster against the endophyte than the pathogen. All flavonoid biosynthesis genes tested were activated by each infection. Biosynthesis and accumulation of phenolic acids, flavan-3-ols and oligomeric proanthocyanidins were clearly elevated in both infected samples. Infection by the pathogen promoted specifically accumulation of epigallocatechin, quercetin-3-glucoside, quercetin-3-O-α-rhamnoside, quercetin-3-O-(4”-HMG)-R-rhamnoside, chlorogenic acid and coumaroyl quinic acid. The endophyte-infected plants had a higher content of quercetin-3-glucuronide and coumaroyl iridoid. Therefore, accumulation of individual phenolic compounds could be specific for each infection. Quantity of insoluble proanthocyanidins was the highest in control plants, suggesting that they might act as storage compounds and become activated by degradation upon infection.


Fungal Biology | 2010

The siderophore ferricrocin produced by specific foliar endophytic fungi in vitro.

Marena Kajula; Mysore V. Tejesvi; Sonja Kolehmainen; Anni Mäkinen; Juho Hokkanen; Sampo Mattila; Anna Maria Pirttilä

Production of extracellular siderophores is typical for many plant-associated microbes, both mutualistic and antagonistic. Various strains of mycorrhizal fungi produce siderophores, and siderophore production by pathogenic fungi is typically associated with virulence. We analyzed extracellular siderophore production along with production of antibacterial and antioxidant compounds in foliar endophytic fungi of Scots pine (Pinus sylvestris L.) and Labrador tea (Rhododendron tomentosum Harmaja). The siderophore produced in vitro was ferricrocin, quantities ranging between 7.9 and 17.6 μg/l. Only the fungi with antibacterial activity produced ferricrocin and any well-known siderophores were not detected in the broths of antioxidant-producing fungi. Therefore, production of ferricrocin is typical for some, but not all foliar endophytic fungi. Ferricrocin was detected in the leaves of Labrador tea, which suggests that ferricrocin may play a role in vivo in the interaction between the endophyte and plant host.


European Journal of Pharmaceutical Sciences | 2011

Metabolism of hyperforin, the active constituent of St. John's wort, in human liver microsomes

Juho Hokkanen; Ari Tolonen; Sampo Mattila; Miia Turpeinen

The metabolism of hyperforin, one of the pharmacologically most active components of St. Johns wort (Hypericum perforatum), was characterized in vitro using human liver microsomes and recombinant heterologously expressed P450 enzymes. A total of 57 hyperforin metabolites were detected. Of those, six were identified as monohydroxylations (M1-M6), while the others were formed via two or more hydroxylation reactions, via dehydrogenation, or by combinations of these reactions. A combined approach of cDNA-expressed recombinant CYPs, CYP-selective chemical inhibitors and correlation with CYP-specific marker activities indicated a central role of the CYP2C and CYP3A families in the metabolism of hyperforin. In addition, hyperforin was found to inhibit CYP2D6 and CYP3A4 model activities quite potently.


Nature Chemical Biology | 2016

Methyl-esterified 3-hydroxybutyrate oligomers protect bacteria from hydroxyl radicals

Janne J. Koskimäki; Marena Kajula; Juho Hokkanen; Emmi-Leena Ihantola; Jong H. Kim; Heidi Hautajärvi; Elina Hankala; Marko Suokas; Johanna Pohjanen; Olga Podolich; Natalia Kozyrovska; Ari Turpeinen; Mirva Pääkkönen; Sampo Mattila; Bruce Campbell; Anna Maria Pirttilä

Bacteria rely mainly on enzymes, glutathione and other low-molecular weight thiols to overcome oxidative stress. However, hydroxyl radicals are the most cytotoxic reactive oxygen species, and no known enzymatic system exists for their detoxification. We now show that methyl-esterified dimers and trimers of 3-hydroxybutyrate (ME-3HB), produced by bacteria capable of polyhydroxybutyrate biosynthesis, have 3-fold greater hydroxyl radical-scavenging activity than glutathione and 11-fold higher activity than vitamin C or the monomer 3-hydroxybutyric acid. We found that ME-3HB oligomers protect hypersensitive yeast deletion mutants lacking oxidative stress-response genes from hydroxyl radical stress. Our results show that phaC and phaZ, encoding polymerase and depolymerase, respectively, are activated and polyhydroxybutyrate reserves are degraded for production of ME-3HB oligomers in bacteria infecting plant cells and exposed to hydroxyl radical stress. We found that ME-3HB oligomer production is widespread, especially in bacteria adapted to stressful environments. We discuss how ME-3HB oligomers could provide opportunities for numerous applications in human health.


Journal of Natural Products | 2016

Bridged Epipolythiodiketopiperazines from Penicillium raciborskii, an Endophytic Fungus of Rhododendron tomentosum Harmaja

Marena Kajula; Joshua M. Ward; Ari Turpeinen; Mysore V. Tejesvi; Juho Hokkanen; Ari Tolonen; Heikki Häkkänen; Pere Picart; Janne A. Ihalainen; Hans-Georg Sahl; Anna Maria Pirttilä; Sampo Mattila

Three new epithiodiketopiperazine natural products [outovirin A (1), outovirin B (2), and outovirin C (3)] resembling the antifungal natural product gliovirin have been identified in extracts of Penicillium raciborskii, an endophytic fungus isolated from Rhododendron tomentosum. The compounds are unusual for their class in that they possess sulfide bridges between α- and β-carbons rather than the typical α-α bridging. To our knowledge, outovirin A represents the first reported naturally produced epimonothiodiketopiperazine, and antifungal outovirin C is the first reported trisulfide gliovirin-like compound. This report describes the identification and structural elucidation of the compounds by LC-MS/MS and NMR.


Frontiers in Pharmacology | 2010

Applicability of Generic Assays Based on Liquid Chromatography–Electrospray Mass Spectrometry to Study in vitro Metabolism of 55 Structurally Diverse Compounds

Timo Rousu; Juho Hokkanen; Olavi Pelkonen; Ari Tolonen

Liquid chromatography–mass spectrometry (LC–MS) with generic gradient elution for a large number of chemically different compounds is a common approach in drug development, used to acquire a large amount of data in a short time frame for drug candidates. The analysis with non-optimized parameters however may lead to a poor method performance for many compounds, and contains a risk of losing important information. Here, generic electrospray time of flight (ESI-TOF) MS methods in various pH conditions were tested for 55 chemically diverse compounds (10 acids, 25 bases, 17 neutrals, and 3 amphoterics), aiming to find best analytical conditions for each compound, for studies of in vitro metabolic properties in liver preparations. The effect of eluent pH and elution gradient strength on chromatographic performance and electrospray MS ionization efficiency were examined for each compound. The data are evaluated how well the best generic approach could cover the analysis of test compounds and how many compounds would still need completely different analytical conditions after that. Aqueous mobile phase consisting of 0.05% acetic acid and 5 mM ammonium acetate (pH 4.4) showed the best general suitability for the analyses, showing adequate performance for metabolite profiling for 41 out of 55 compounds either in positive or negative ion mode. In positive ion mode, the main limitation of performance in various pH conditions was generally not the lack of ionization, but rather the poor chromatographic performance (inadequate retention or poor peak shape), suggesting that more emphasis should be put in finding conditions providing best chromatographic performance, rather than highest ionization properties. However, a single generic approach for a large number of different compounds is not likely to produce good results for all compounds. Preferably, at least two or three different conditions are needed for the coverage of a larger number of structurally diverse compounds.


British Journal of Clinical Pharmacology | 2017

Maturation of oxycodone pharmacokinetics in neonates and infants: Oxycodone and its metabolites in plasma and urine

Merja Kokki; Marja Heikkinen; Pyry A. J. Välitalo; Heidi Hautajärvi; Juho Hokkanen; Hanna Pitkänen; Ulla Sankilampi; Veli-Pekka Ranta; Hannu Kokki

AIMS This study aimed to characterize the pharmacokinetics of oxycodone and its major metabolites in infants and covered the age range between extremely preterm neonates and 2‐year‐old infants. METHODS Seventy‐nine infants (gestational age 23–42 weeks; postnatal age 0–650 days) received intravenous oxycodone hydrochloride trihydrate at a dose of 0.1 mg kg−1 during or after surgery. Three to seven blood samples were taken from each infant, and plasma concentrations of oxycodone, noroxycodone, oxymorphone, and noroxymorphone were quantified. The unconjugated forms of these compounds were determined in urine collected after up to 24 or 48 h from 25 infants. Pharmacokinetics was determined using noncompartmental analysis and reported for six clinically relevant age groups based on postmenstrual age. RESULTS Oxycodone pharmacokinetics changed markedly with patient age. Preterm neonates were found to have the highest pharmacokinetic variability out of the study population. In extremely preterm neonates (n = 6) median of elimination half‐life was 8.8 h (range 6.8–12.5), in preterm (n = 11) 7.4 h (4.2–11.6), and in older neonates (n = 22) 4.1 h (2.4–5.8), all of which were significantly longer than that in infants aged 6–24 months (n = 12) 2.0 h (1.7–2.6). Median renal clearance was fairly constant in all age groups, whereas non‐renal clearance markedly increased with age. Noroxycodone was the major metabolite in plasma and urine. CONCLUSIONS Oxycodone elimination is slower and pharmacokinetic variability more pronounced in neonates when compared to older infants. These findings highlight the importance of careful dose titration for neonates.


Environmental Toxicology and Pharmacology | 2010

Xenobiotic metabolism of bank vole (Myodes glareolus) exposed to PCDDs.

Mari Murtomaa; Pirkko Viitala; Juho Hokkanen; Olavi Pelkonen; Arja Rautio

Previous studies in bank vole (Myodes glareolus) and field vole (Microtus agrestis) living at the old sawmill area contaminated by chlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) showed that these two relatively close species have a significant difference in their body burden of PCDD/Fs, bank voles having significantly higher concentrations. The aim of this study was to clarify more comprehensively the basic xenobiotic metabolism in wild bank voles and examine whether PCDD exposure would affect xenobiotic metabolism in bank voles more generally. The activity of cytochrome P450 enzymes was studied by fluorometric analyzes as well as by the aid of an earlier developed N-in-one CYP-selective activity cocktail, and immunoblotting assay. Several CYP-associated activities were considerably and statistically significantly elevated in the liver of animals living in the contaminated area. Increases in several CYP1A- and CYP2A/B-associated activities are probably due to the exposure to variable dioxin- and PCB-class inducers. The results of this comprehensive screening seemed to be in agreement with the existing knowledge of CYP enzyme induction by dioxin-like substances.

Collaboration


Dive into the Juho Hokkanen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge