Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Armelle Logie is active.

Publication


Featured researches published by Armelle Logie.


Molecular Cancer Therapeutics | 2007

AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models

Barry R. Davies; Armelle Logie; Jennifer S. McKay; Paul Martin; Samantha Steele; Richard Jenkins; Mark Cockerill; Sue Cartlidge; Paul D. Smith

Constitutive activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signaling pathway in human cancers is often associated with mutational activation of BRAF or RAS. MAPK/ERK kinase 1/2 kinases lie downstream of RAS and BRAF and are the only acknowledged activators of ERK1/2, making them attractive targets for therapeutic intervention. AZD6244 (ARRY-142886) is a potent, selective, and ATP-uncompetitive inhibitor of MAPK/ERK kinase 1/2. In vitro cell viability inhibition screening of a tumor cell line panel found that lines harboring BRAF or RAS mutations were more likely to be sensitive to AZD6244. The in vivo mechanisms by which AZD6244 inhibits tumor growth were investigated. Chronic dosing with 25 mg/kg AZD6244 bd resulted in suppression of growth of Colo-205, Calu-6, and SW-620 xenografts, whereas an acute dose resulted in significant inhibition of ERK1/2 phosphorylation. Increased cleaved caspase-3, a marker of apoptosis, was detected in Colo-205 and Calu-6 but not in SW-620 tumors where a significant decrease in cell proliferation was detected. Chronic dosing of AZD6244 induced a morphologic change in SW-620 tumors to a more differentiated phenotype. The potential of AZD6244 in combination with cytotoxic drugs was evaluated in mice bearing SW-620 xenografts. Treatment with tolerated doses of AZD6244 and either irinotecan or docetaxel resulted in significantly enhanced antitumor efficacy relative to that of either agent alone. These results indicate that AZD6244 has potential to inhibit proliferation and induce apoptosis and differentiation, but the response varies between different xenografts. Moreover, enhanced antitumor efficacy can be obtained by combining AZD6244 with the cytotoxic drugs irinotecan or docetaxel. [Mol Cancer Ther 2007;6(8):2209–19]


Molecular Oncology | 2009

Preclinical anticancer activity of the potent, oral Src inhibitor AZD0530

Tim P. Green; Mike Fennell; Robin D. Whittaker; Jon Owen Curwen; Vivien Jacobs; Jack Allen; Armelle Logie; Judith Hargreaves; D. Mark Hickinson; Robert W. Wilkinson; Paul Elvin; Brigitte Boyer; Neil Oliver Carragher; Patrick Ple; Alun Bermingham; Geoffrey A. Holdgate; Walter H.J. Ward; Laurent Francois Andre Hennequin; Barry R. Davies; Gerard Costello

AZD0530, an orally available Src inhibitor, demonstrated potent antimigratory and anti‐invasive effects in vitro, and inhibited metastasis in a murine model of bladder cancer. Antiproliferative activity of AZD0530 in vitro varied between cell lines (IC50 0.2 –>10μM). AZD0530 inhibited tumor growth in 4/10 xenograft models tested and dynamically inhibited in vivo phosphorylation of Src substrates paxillin and FAK in both growth‐inhibition‐resistant and ‐sensitive xenografts. The activity of AZD0530 in NBT‐II bladder cancer cells in vitro was consistent with inhibition of cell migration and stabilization of cell–cell adhesion. These data suggest a dominant anti‐invasive pharmacology for AZD0530 that may limit tumor progression in a range of cancers. AZD0530 is currently in Phase II clinical trials.


British Journal of Cancer | 2012

The MEK1/2 inhibitor, selumetinib (AZD6244; ARRY-142886), enhances anti-tumour efficacy when combined with conventional chemotherapeutic agents in human tumour xenograft models.

Sarah V. Holt; Armelle Logie; Rajesh Odedra; A Heier; S P Heaton; Denis Alferez; Barry R. Davies; Robert W. Wilkinson; Paul D. Smith

Background:The Ras/RAF/MEK/ERK pathway is frequently deregulated in cancer and a number of inhibitors that target this pathway are currently in clinical development. It is likely that clinical testing of these agents will be in combination with standard therapies to harness the apoptotic potential of both the agents. To support this strategy, it has been widely observed that a number of chemotherapeutics stimulate the activation of several intracellular signalling cascades including Ras/RAF/MEK/ERK. The MEK1/2 inhibitor selumetinib has been shown to have anti-tumour activity and induce apoptotic cell death as a monotherapy.Methods:The aim of this study was to identify agents, which would be likely to offer clinical benefit when combined with selumetinib. Here, we used human tumour xenograft models and assessed the effects combining standard chemotherapeutic agents with selumetinib on tumour growth. In addition, we analysed tumour tissue to determine the mechanistic effects of these combinations.Results:Combining selumetinib with the DNA-alkylating agent, temozolomide (TMZ), resulted in enhanced tumour growth inhibition compared with monotherapies. Biomarker studies highlighted an increase in γH2A.X suggesting that selumetinib is able to enhance the DNA damage induced by TMZ alone. In several models we observed that continuous exposure to selumetinib in combination with docetaxel results in tumour regression. Scheduling of docetaxel before selumetinib was more beneficial than when selumetinib was dosed before docetaxel and demonstrated a pro-apoptotic phenotype. Similar results were seen when selumetinib was combined with the Aurora B inhibitor barasertib.Conclusion:The data presented suggests that MEK inhibition in combination with several standard chemotherapeutics or an Aurora B kinase inhibitor is a promising clinical strategy.


Cancer Research | 2012

Enhanced Apoptosis and Tumor Growth Suppression Elicited by Combination of MEK (Selumetinib) and mTOR Kinase Inhibitors (AZD8055)

Sarah V. Holt; Armelle Logie; Barry R. Davies; Denis Alferez; Sarah Runswick; Sarah L. Fenton; Christine M. Chresta; Yi Gu; Jingchuan Zhang; Yi-Long Wu; R. Wilkinson; Sylvie Guichard; Paul D. Smith

The mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase/AKT signaling pathways interact at multiple nodes in cancer, including at mTOR complexes, suggesting an increased likelihood of redundancy and innate resistance to any therapeutic effects of single pathway inhibition. In this study, we investigated the therapeutic effects of combining the MAPK extracellular signal-regulated kinase (MEK)1/2 inhibitor selumetinib (AZD6244) with the dual mTORC1 and mTORC2 inhibitor (AZD8055). Concurrent dosing in nude mouse xenograft models of human lung adenocarcinoma (non-small cell lung cancers) and colorectal carcinoma was well tolerated and produced increased antitumor efficacy relative to the respective monotherapies. Pharmacodynamic analysis documented reciprocal pathway inhibition associated with increased apoptosis and Bim expression in tumor tissue from the combination group, where key genes such as DUSP6 that are under MEK functional control were also modulated. Our work offers a strong rationale to combine selumetinib and AZD8055 in clinical trials as an attractive therapeutic strategy.


Clinical Cancer Research | 2009

The Mitogen-Activated Protein/Extracellular Signal-Regulated Kinase Kinase 1/2 Inhibitor AZD6244 (ARRY-142886) Enhances the Radiation Responsiveness of Lung and Colorectal Tumor Xenografts

Aoife M. Shannon; Brian A. Telfer; Paul D. Smith; Muhammed Babur; Armelle Logie; R. Wilkinson; Camille Debray; Ian J. Stratford; Kaye J. Williams; Stephen R. Wedge

Purpose: Novel molecularly targeted agents, given in combination with radiotherapy, have the potential to increase tumor response rates and the survival of patients with lung cancer. AZD6244 is a potent and selective inhibitor of mitogen-activated protein kinase (MAPK) kinase 1/2 (MEK1/2), a critical enzyme within the MAPK/extracellular signal-regulated kinase (ERK) signaling pathway that regulates the proliferation and survival of tumor cells. Experimental Design: This study examined the potential benefit of combining AZD6244 with fractionated radiotherapy using human lung and colon carcinoma xenograft models. Results: AZD6244 reduced ERK phosphorylation in Calu-6 lung cancer cells in vitro. Administration of AZD6244 for 10 days (25 mg/kg twice daily p.o.) inhibited the tumor growth of Calu-6 xenografts, with regrowth occurring on cessation of drug treatment. When fractionated tumor-localized radiotherapy (5 × 2 Gy) was combined with AZD6244 treatment, the tumor growth delay was enhanced significantly when compared with either modality alone, and this effect was also seen in a colon tumor model. We examined the effect of inhibiting MEK1/2 on the molecular responses to hypoxia, a potential interaction that could contribute to radioresponsiveness. AZD6244 reduced hypoxia-inducible factor–specific transactivation in vivo, shown using Calu-6 dual clone cells that stably express a Firefly luciferase gene under the control of a hypoxia-driven promoter. Furthermore, hypoxia-inducible factor-1α, GLUT-1, and vascular endothelial growth factor levels were reduced by AZD6244, and there was a significant decrease in vascular perfusion in the tumors given combination treatment when compared with the other treatment groups. Conclusions: These data provide support for the clinical development of AZD6244 in combination with radiotherapy and indicate a potential role for AZD6244 in inhibiting the tumor hypoxia response. (Clin Cancer Res 2009;15(21):6619–29)


Biochemical Society Transactions | 2011

Benefits of mTOR kinase targeting in oncology: pre-clinical evidence with AZD8055

Gayle Marshall; Zoe Howard; Jonathan R. Dry; Sarah Fenton; Dan Heathcote; Neil Gray; Heather Keen; Armelle Logie; Sarah V. Holt; Paul D. Smith; Sylvie Guichard

AZD8055 is a small-molecule inhibitor of mTOR (mammalian target of rapamycin) kinase activity. The present review highlights molecular and phenotypic differences between AZD8055 and allosteric inhibitors of mTOR such as rapamycin. Biomarkers, some of which are applicable to clinical studies, as well as biological effects such as autophagy, growth inhibition and cell death are compared between AZD8055 and rapamycin. Potential ways to develop rational combinations with mTOR kinase inhibitors are also discussed. Overall, AZD8055 may provide a better therapeutic strategy than rapamycin and analogues.


Molecular Cancer Therapeutics | 2015

Tumors with AKT1E17K Mutations Are Rational Targets for Single Agent or Combination Therapy with AKT Inhibitors

Barry R. Davies; Nin Guan; Armelle Logie; Claire Crafter; Lyndsey Hanson; Vivien Jacobs; Neil H. James; Philippa Dudley; Kelly Jacques; Brendon Ladd; Celina D'Cruz; Michael Zinda; Justin Lindemann; Makoto Kodaira; Kenji Tamura; Emma L. Jenkins

AKT1E17K mutations occur at low frequency in a variety of solid tumors, including those of the breast and urinary bladder. Although this mutation has been shown to transform rodent cells in culture, it was found to be less oncogenic than PIK3CA mutations in breast epithelial cells. Moreover, the therapeutic potential of AKT inhibitors in human tumors with an endogenous AKT1E17K mutation is not known. Expression of exogenous copies of AKT1E17K in MCF10A breast epithelial cells increased phosphorylation of AKT and its substrates, induced colony formation in soft agar, and formation of lesions in the mammary fat pad of immunodeficient mice. These effects were inhibited by the allosteric and catalytic AKT inhibitors MK-2206 and AZD5363, respectively. Both AKT inhibitors caused highly significant growth inhibition of breast cancer explant models with AKT1E17K mutation. Furthermore, in a phase I clinical study, the catalytic Akt inhibitor AZD5363 induced partial responses in patients with breast and ovarian cancer with tumors containing AKT1E17K mutations. In MGH-U3 bladder cancer xenografts, which contain both AKT1E17K and FGFR3Y373C mutations, AZD5363 monotherapy did not significantly reduce tumor growth, but tumor regression was observed in combination with the FGFR inhibitor AZD4547. The data show that tumors with AKT1E17K mutations are rational therapeutic targets for AKT inhibitors, although combinations with other targeted agents may be required where activating oncogenic mutations of other proteins are present in the same tumor. Mol Cancer Ther; 14(11); 2441–51. ©2015 AACR.


Oncotarget | 2016

Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers.

James Bradford; Mark Wappett; Garry Beran; Armelle Logie; Oona Delpuech; Henry Brown; Joanna Boros; Nicola J. Camp; Robert McEwen; Anne Marie Mazzola; Celina M. D’Cruz; Simon T. Barry

The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX). Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment. In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery.


Cancer Research | 2012

Abstract 917: AZD2014, a dual mTORC1 and mTORC2 inhibitor is differentiated from allosteric inhibitors of mTORC1 in ER+ breast cancer

Sylvie Guichard; Zoe Howard; Dan Heathcote; Mark Roth; Gareth Hughes; Jon Owen Curwen; James Yates; Armelle Logie; Sarah V. Holt; Christine M. Chresta; Barry R. Davies; Karine Malagu; Marc Geoffrey Hummersone; Sarah L. Pass; Stephen Green; Martin Pass

The mammalian target of rapamycin (mTOR) is a major sensor of nutrients and energy and is part of two multiprotein complexes mTORC1 and mTORC2. mTOR activation is widely reported in cancer and is associated with poor prognosis and resistance to standard of care treatment. Allosteric inhibitors of mTOR such as rapamycin partially inhibit mTORC1 and do not inhibit mTORC2. AZD2014 is a close analogue of AZD8055 and a selective inhibitor of mTOR kinase. AZD2014 has greater inhibitory activity against mTORC1 compared to rapamycin: AZD2014 decreases p4EBP1 Thr37/46, inhibits the translation initiation complex and decreases overall protein synthesis while rapamycin has no effect. AZD2014 also inhibits the mTORC2 biomarkers pAKTSer473 and pNDRG1Thr346. AZD2014 has broad antiproliferative activity across multiple tumour cell lines. In particular, AZD2014 induces growth inhibition and cell death in breast cancer cell lines, including ER+ cell lines with acquired resistance to hormone therapy. In vitro, the potency of AZD2014 is ∼ 5-fold lower compared to AZD8055. However, AZD2014 has improved pharmacokinetics compared to AZD8055. In vivo, AZD2014 induces tumour growth inhibition against several xenograft models including a human primary explant model of ER+ breast cancer refractory to tamoxifen. The antitumour activity is associated with modulation of both mTORC1 and mTORC2 substrates. Overall, AZD2014 is a potent mTOR kinase inhibitor with an in vitro profile comparable to AZD8055 but with improved pharmacokinetic properties over AZD8055. AZD2014 is currently in phase 1 clinical trials. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 917. doi:1538-7445.AM2012-917


Oncotarget | 2017

Pre-clinical pharmacology of AZD3965, a selective inhibitor of MCT1: DLBCL, NHL and Burkitt’s lymphoma anti-tumor activity

Nicola Curtis; Lorna Hopcroft; Filippos Michopoulos; Nichola Whalley; Haihong Zhong; Clare Murray; Armelle Logie; Mitchell Revill; Kate Byth; Amanda Benjamin; Mike A. Firth; Stephen J. Green; Paul D. Smith; Susan E. Critchlow

Tumors frequently display a glycolytic phenotype with increased flux through glycolysis and concomitant synthesis of lactate. To maintain glycolytic flux and prevent intracellular acidification, tumors efflux lactate via lactate transporters (MCT1-4). Inhibitors of lactate transport have the potential to inhibit glycolysis and tumor growth. We developed a small molecule inhibitor of MCT1 (AZD3965) and assessed its activity across a panel of cell lines. We explored its antitumor activity as monotherapy and in combination with doxorubicin or rituximab. AZD3965 is a potent inhibitor of MCT1 with activity against MCT2 but selectivity over MCT3 and MCT4. In vitro, AZD3965 inhibited the growth of a range of cell lines especially haematological cells. Inhibition of MCT1 by AZD3965 inhibited lactate efflux and resulted in accumulation of glycolytic intermediates. In vivo, AZD3965 caused lactate accumulation in the Raji Burkitt’s lymphoma model and significant tumor growth inhibition. Moreover, AZD3965 can be combined with doxorubicin or rituximab, components of the R-CHOP standard-of-care in DLBCL and Burkitt’s lymphoma. Finally, combining lactate transport inhibition by AZD3965 with GLS1 inhibition in vitro, enhanced cell growth inhibition and cell death compared to monotherapy treatment. The ability to combine AZD3965 with novel, and standard-of-care inhibitors offers novel combination opportunities in haematological cancers.Tumors frequently display a glycolytic phenotype with increased flux through glycolysis and concomitant synthesis of lactate. To maintain glycolytic flux and prevent intracellular acidification, tumors efflux lactate via lactate transporters (MCT1-4). Inhibitors of lactate transport have the potential to inhibit glycolysis and tumor growth. We developed a small molecule inhibitor of MCT1 (AZD3965) and assessed its activity across a panel of cell lines. We explored its antitumor activity as monotherapy and in combination with doxorubicin or rituximab. AZD3965 is a potent inhibitor of MCT1 with activity against MCT2 but selectivity over MCT3 and MCT4. In vitro, AZD3965 inhibited the growth of a range of cell lines especially haematological cells. Inhibition of MCT1 by AZD3965 inhibited lactate efflux and resulted in accumulation of glycolytic intermediates. In vivo, AZD3965 caused lactate accumulation in the Raji Burkitts lymphoma model and significant tumor growth inhibition. Moreover, AZD3965 can be combined with doxorubicin or rituximab, components of the R-CHOP standard-of-care in DLBCL and Burkitts lymphoma. Finally, combining lactate transport inhibition by AZD3965 with GLS1 inhibition in vitro, enhanced cell growth inhibition and cell death compared to monotherapy treatment. The ability to combine AZD3965 with novel, and standard-of-care inhibitors offers novel combination opportunities in haematological cancers.

Collaboration


Dive into the Armelle Logie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge