Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taylor Shingler is active.

Publication


Featured researches published by Taylor Shingler.


Bulletin of the American Meteorological Society | 2013

Eastern Pacific Emitted Aerosol Cloud Experiment

Lynn M. Russell; Armin Sorooshian; John H. Seinfeld; Bruce A. Albrecht; Athanasios Nenes; Lars Ahlm; Yi-Chun Chen; Matthew M. Coggon; J. S. Craven; Amanda A. Frossard; Haflidi H. Jonsson; Eunsil Jung; Jack J. Lin; A. R. Metcalf; R. L. Modini; Johannes Mülmenstädt; G. C. Roberts; Taylor Shingler; Siwon Song; Zhen Wang; Anna Wonaschütz

Aerosol–cloud–radiation interactions are widely held to be the largest single source of uncertainty in climate model projections of future radiative forcing due to increasing anthropogenic emissions. The underlying causes of this uncertainty among modeled predictions of climate are the gaps in our fundamental understanding of cloud processes. There has been significant progress with both observations and models in addressing these important questions but quantifying them correctly is nontrivial, thus limiting our ability to represent them in global climate models. The Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) 2011 was a targeted aircraft campaign with embedded modeling studies, using the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft and the research vessel Point Sur in July and August 2011 off the central coast of California, with a full payload of instruments to measure particle and cloud number, mass, composition, and water uptake distributi...


Environmental Science & Technology | 2012

Hygroscopic and Chemical Properties of Aerosols collected near a Copper Smelter: Implications for Public and Environmental Health

Armin Sorooshian; Janae Csavina; Taylor Shingler; S. Dey; Fred J. Brechtel; A. Eduardo Sáez; Eric A. Betterton

Particulate matter emissions near active copper smelters and mine tailings in the southwestern United States pose a potential threat to nearby environments owing to toxic species that can be inhaled and deposited in various regions of the body depending on the composition and size of the particles, which are linked by particle hygroscopic properties. This study reports the first simultaneous measurements of size-resolved chemical and hygroscopic properties of particles next to an active copper smelter and mine tailings by the towns of Hayden and Winkelman in southern Arizona. Size-resolved particulate matter samples were examined with inductively coupled plasma mass spectrometry, ion chromatography, and a humidified tandem differential mobility analyzer. Aerosol particles collected at the measurement site are enriched in metals and metalloids (e.g., arsenic, lead, and cadmium) and water-uptake measurements of aqueous extracts of collected samples indicate that the particle diameter range of particles most enriched with these species (0.18-0.55 μm) overlaps with the most hygroscopic mode at a relative humidity of 90% (0.10-0.32 μm). These measurements have implications for public health, microphysical effects of aerosols, and regional impacts owing to the transport and deposition of contaminated aerosol particles.


Atmosphere | 2014

A Multi-Year Aerosol Characterization for the Greater Tehran Area Using Satellite, Surface, and Modeling Data

Ewan Crosbie; Armin Sorooshian; Negar Abolhassani Monfared; Taylor Shingler; Omid Esmaili

This study reports a multi-year (2000–2009) aerosol characterization for metropolitan Tehran and surrounding areas using multiple datasets (Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer (MISR), Total Ozone Mapping Spectrometer (TOMS), Goddard Ozone Chemistry Aerosol Radiation and Transport (GOCART), and surface and upper air data from local stations). Monthly trends in aerosol characteristics are examined in the context of the local meteorology, regional and local emission sources, and air mass back-trajectory data. Dust strongly affects the region during the late spring and summer months (May–August) when aerosol optical depth (AOD) is at its peak and precipitation accumulation is at a minimum. In addition, the peak AOD that occurs in July is further enhanced by a substantial number of seasonal wildfires in upwind regions. Conversely, AOD is at a minimum during winter; however, reduced mixing heights and a stagnant lower atmosphere trap local aerosol emissions near the surface and lead to significant reductions in visibility within Tehran. The unique meteorology and topographic setting makes wintertime visibility and surface aerosol concentrations particularly sensitive to local anthropogenic sources and is evident in the noteworthy improvement in visibility observed on weekends. Scavenging of aerosol due to precipitation is evident during the winter when aconsistent increase in surface visibility and concurrent decrease in AOD is observed in the days after rain compared with the days immediately before rain.


Journal of Geophysical Research | 2016

Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5 km during the SEAC4RS campaign

Taylor Shingler; Ewan Crosbie; Amber M. Ortega; Manabu Shiraiwa; Andreas Zuend; A. J. Beyersdorf; Luke D. Ziemba; Bruce E. Anderson; L. Thornhill; A. E. Perring; Joshua P. Schwarz; Pedro Campazano-Jost; Douglas A. Day; Jose L. Jimenez; Johnathan W. Hair; Tomas Mikoviny; Armin Wisthaler; Armin Sorooshian

In situ aerosol particle measurements were conducted during 21 NASA DC-8 flights in the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys field campaign over the United States, Canada, Pacific Ocean, and Gulf of Mexico. For the first time, this study reports rapid, size-resolved hygroscopic growth and real refractive index (RI at 532 nm) data between the surface and upper troposphere in a variety of air masses including wildfires, agricultural fires, biogenic, marine, and urban outflow. The Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP) quantified size-resolved diameter growth factors (GF = Dp,wet/Dp,dry) that are used to infer the hygroscopicity parameter κ. Thermokinetic simulations were conducted to estimate the impact of partial particle volatilization within the DASH-SP across a range of sampling conditions. Analyses of GF and RI data as a function of air mass origin, dry size, and altitude are reported, in addition to κ values for the inorganic and organic fractions of aerosol. Average RI values are found to be fairly constant (1.52–1.54) for all air mass categories. An algorithm is used to compare size-resolved DASH-SP GF with bulk scattering f(RH = 80%) data obtained from a pair of nephelometers, and the results show that the two can only be reconciled if GF is assumed to decrease with increasing dry size above 400 nm (i.e., beyond the upper bound of DASH-SP measurements). Individual case studies illustrate variations of hygroscopicity as a function of dry size, environmental conditions, altitude, and composition.


Journal of Geophysical Research | 2015

Surface and Airborne Measurements of Organosulfur and Methanesulfonate Over the Western United States and Coastal Areas.

Armin Sorooshian; Ewan Crosbie; L.C. Maudlin; Jong Sang Youn; Zhen Wang; Taylor Shingler; Amber M. Ortega; Scott Hersey; Roy K. Woods

This study reports on ambient measurements of organosulfur (OS) and methanesulfonate (MSA) over the western United States and coastal areas. Particulate OS levels are highest in summertime, and generally increase as a function of sulfate (a precursor) and sodium (a marine tracer) with peak levels at coastal sites. The ratio of OS to total sulfur (TS) is also highest at coastal sites, with increasing values as a function of Normalized Difference Vegetation Index (NDVI) and the ratio of organic carbon to elemental carbon. Correlative analysis points to significant relationships between OS and biogenic emissions from marine and continental sources, factors that coincide with secondary production, and vanadium due to a suspected catalytic role. A major OS species, methanesulfonate (MSA), was examined with intensive field measurements and the resulting data support the case for vanadiums catalytic influence. Mass size distributions reveal a dominant MSA peak between aerodynamic diameters of 0.32-0.56 μm at a desert and coastal site with nearly all MSA mass (≥ 84%) in sub-micrometer sizes; MSA:non-sea salt sulfate ratios vary widely as a function of particle size and proximity to the ocean. Airborne data indicate that relative to the marine boundary layer, particulate MSA levels are enhanced in urban and agricultural areas, and also the free troposphere when impacted by biomass burning. Some combination of fires and marine-derived emissions leads to higher MSA levels than either source alone. Finally, MSA differences in cloud water and out-of-cloud aerosol are discussed.


Journal of Geophysical Research | 2016

Ambient observations of hygroscopic growth factor and f(RH) below 1: Case studies from surface and airborne measurements†

Taylor Shingler; Armin Sorooshian; Amber M. Ortega; Ewan Crosbie; Anna Wonaschütz; A. E. Perring; Andreas J. Beyersdorf; Luke D. Ziemba; Jose L. Jimenez; Pedro Campuzano-Jost; Tomas Mikoviny; Armin Wisthaler; Lynn M. Russell

This study reports on the first set of ambient observations of sub-1.0 hygroscopicity values (i.e., growth factor, ratio of humidified-to-dry diameter, GF=D p,wet /D p,dry and f(RH), ratio of humidified-to-dry scattering coefficients, less than 1) with consistency across different instruments, regions, and platforms. We utilized data from (i) a shipboard humidified tandem differential mobility analyzer (HTDMA) during Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) in 2011, (ii) multiple instruments on the DC-8 aircraft during Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) in 2013, as well as (iii) the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP) during measurement intensives during Summer 2014 and Winter 2015 in Tucson, Arizona. Sub-1.0 GFs were observed across the range of relative humidity (RH) investigated (75-95%), and did not show a RH-dependent trend in value below 1.0 or frequency of occurrence. A commonality between suppressed hygroscopicity in these experiments, including sub-1.0 GF, was the presence of smoke. Evidence of externally mixed aerosol, and thus multiple GFs, was observed during smoke periods resulting in at least one mode with GF < 1. Time periods during which the DASH-SP detected externally mixed aerosol coincide with sub-1.0 f(RH) observations. Mechanisms responsible for sub-1.0 hygroscopicity are discussed and include refractive index (RI) modifications due to aqueous processing, particle restructuring, and volatilization effects. To further investigate ambient observations of sub-1.0 GFs, f(RH), and particle restructuring, modifying hygroscopicity instruments with pre-humidification modules is recommended.


Journal of Geophysical Research | 2017

In situ measurements of water uptake by black carbon-containing aerosol in wildfire plumes

A. E. Perring; Joshua P. Schwarz; Milos Z. Markovic; D. W. Fahey; Jose L. Jimenez; Pedro Campuzano-Jost; Brett D. Palm; Armin Wisthaler; Tomas Mikoviny; Glenn S. Diskin; Glen W. Sachse; Luke D. Ziemba; Bruce E. Anderson; Taylor Shingler; Ewan Crosbie; Armin Sorooshian; Robert J. Yokelson; Ru Shan Gao

NOAA Atmospheric Composition and Climate Program; NASA Radiation Sciences Program; NASA Upper Atmosphere Research Program; NASA [NNX12AC10G, NNX14AP75G, NNX14AK79H, NNX12AC03G, NNX15AT96G]; NASA Earth Science Division [NNX12AC20G, NNX14AP45G]


Scientific Data | 2018

A Multi-Year Data Set on Aerosol-Cloud-Precipitation-Meteorology Interactions for Marine Stratocumulus Clouds

Armin Sorooshian; Alexander B. MacDonald; Hossein Dadashazar; Kelvin H. Bates; Matthew M. Coggon; J. S. Craven; Ewan Crosbie; Scott Hersey; Natasha Hodas; Jack J. Lin; Arnaldo Negrón Marty; Lindsay C. Maudlin; A. R. Metcalf; Shane Murphy; Luz T. Padró; Gouri Prabhakar; Tracey A. Rissman; Taylor Shingler; Varuntida Varutbangkul; Zhen Wang; Roy K. Woods; Patrick Y. Chuang; Athanasios Nenes; Haflidi H. Jonsson; John H. Seinfeld

Airborne measurements of meteorological, aerosol, and stratocumulus cloud properties have been harmonized from six field campaigns during July-August months between 2005 and 2016 off the California coast. A consistent set of core instruments was deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies Twin Otter for 113 flight days, amounting to 514 flight hours. A unique aspect of the compiled data set is detailed measurements of aerosol microphysical properties (size distribution, composition, bioaerosol detection, hygroscopicity, optical), cloud water composition, and different sampling inlets to distinguish between clear air aerosol, interstitial in-cloud aerosol, and droplet residual particles in cloud. Measurements and data analysis follow documented methods for quality assurance. The data set is suitable for studies associated with aerosol-cloud-precipitation-meteorology-radiation interactions, especially owing to sharp aerosol perturbations from ship traffic and biomass burning. The data set can be used for model initialization and synergistic application with meteorological models and remote sensing data to improve understanding of the very interactions that comprise the largest uncertainty in the effect of anthropogenic emissions on radiative forcing.


Journal of Geophysical Research | 2017

Contrasting aerosol refractive index and hygroscopicity in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3

Armin Sorooshian; Taylor Shingler; Ewan Crosbie; M. C. Barth; Cameron R. Homeyer; Pedro Campuzano-Jost; Douglas A. Day; Jose L. Jimenez; K. L. Thornhill; Luke D. Ziemba; D. R. Blake; Alan Fried

NASA [NNX12AC1OG, NNX14AP75G, NNX12AC03G, NNX15AT96G]; NASA Earth and Space Science Fellowship [NNX14AK79H]; ONR [N00014-10-1-0811, N00014-16-1-2567]; National Science Foundation [AGS-1522910]; National Science Foundation


Journal of Geophysical Research | 2017

Analysis of remotely sensed and surface data of aerosols and meteorology for the Mexico Megalopolis Area between 2003 and 2015

Marco Mora; Rachel A. Braun; Taylor Shingler; Armin Sorooshian

This paper presents an aerosol characterization study from 2003 to 2015 for the Mexico City Metropolitan Area using remotely sensed aerosol data, ground-based measurements, air mass trajectory modeling, aerosol chemical composition modeling, and reanalysis data for the broader Megalopolis of Central Mexico region. The most extensive biomass burning emissions occur between March and May concurrent with the highest aerosol optical depth, ultraviolet aerosol index, and surface particulate matter (PM) mass concentration values. A notable enhancement in coarse PM levels is observed during vehicular rush hour periods on weekdays versus weekends owing to nonengine-related emissions such as resuspended dust. Among wet deposition species measured, PM2.5, PM10, and PMcoarse (PM10-PM2.5) were best correlated with NH4+, SO42-, and Ca2+, suggesting that the latter three constituents are important components of the aerosol seeding raindrops that eventually deposit to the surface in the study region. Reductions in surface PM mass concentrations were observed in 2014-2015 owing to reduced regional biomass burning as compared to 2003-2013.

Collaboration


Dive into the Taylor Shingler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ewan Crosbie

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jose L. Jimenez

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Zhen Wang

University of Arizona

View shared research outputs
Top Co-Authors

Avatar

Pedro Campuzano-Jost

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge