Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ewan Crosbie is active.

Publication


Featured researches published by Ewan Crosbie.


Atmosphere | 2014

A Multi-Year Aerosol Characterization for the Greater Tehran Area Using Satellite, Surface, and Modeling Data

Ewan Crosbie; Armin Sorooshian; Negar Abolhassani Monfared; Taylor Shingler; Omid Esmaili

This study reports a multi-year (2000–2009) aerosol characterization for metropolitan Tehran and surrounding areas using multiple datasets (Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer (MISR), Total Ozone Mapping Spectrometer (TOMS), Goddard Ozone Chemistry Aerosol Radiation and Transport (GOCART), and surface and upper air data from local stations). Monthly trends in aerosol characteristics are examined in the context of the local meteorology, regional and local emission sources, and air mass back-trajectory data. Dust strongly affects the region during the late spring and summer months (May–August) when aerosol optical depth (AOD) is at its peak and precipitation accumulation is at a minimum. In addition, the peak AOD that occurs in July is further enhanced by a substantial number of seasonal wildfires in upwind regions. Conversely, AOD is at a minimum during winter; however, reduced mixing heights and a stagnant lower atmosphere trap local aerosol emissions near the surface and lead to significant reductions in visibility within Tehran. The unique meteorology and topographic setting makes wintertime visibility and surface aerosol concentrations particularly sensitive to local anthropogenic sources and is evident in the noteworthy improvement in visibility observed on weekends. Scavenging of aerosol due to precipitation is evident during the winter when aconsistent increase in surface visibility and concurrent decrease in AOD is observed in the days after rain compared with the days immediately before rain.


Nature | 2017

Biofuel blending reduces particle emissions from aircraft engines at cruise conditions

R. H. Moore; K. L. Thornhill; Bernadett Weinzierl; Daniel Sauer; Eugenio D’Ascoli; J. Kim; Michael Lichtenstern; Monika Scheibe; Brian Beaton; A. J. Beyersdorf; J. Barrick; Dan I. Bulzan; Chelsea A. Corr; Ewan Crosbie; Tina Jurkat; Robert D. Martin; Dean Riddick; Michael Shook; Gregory Slover; Christiane Voigt; Robert J. White; Edward L. Winstead; Richard Yasky; Luke D. Ziemba; Anthony Brown; Hans Schlager; Bruce E. Anderson

Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol–cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC‐8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.


Journal of Geophysical Research | 2016

Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5 km during the SEAC4RS campaign

Taylor Shingler; Ewan Crosbie; Amber M. Ortega; Manabu Shiraiwa; Andreas Zuend; A. J. Beyersdorf; Luke D. Ziemba; Bruce E. Anderson; L. Thornhill; A. E. Perring; Joshua P. Schwarz; Pedro Campazano-Jost; Douglas A. Day; Jose L. Jimenez; Johnathan W. Hair; Tomas Mikoviny; Armin Wisthaler; Armin Sorooshian

In situ aerosol particle measurements were conducted during 21 NASA DC-8 flights in the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys field campaign over the United States, Canada, Pacific Ocean, and Gulf of Mexico. For the first time, this study reports rapid, size-resolved hygroscopic growth and real refractive index (RI at 532 nm) data between the surface and upper troposphere in a variety of air masses including wildfires, agricultural fires, biogenic, marine, and urban outflow. The Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP) quantified size-resolved diameter growth factors (GF = Dp,wet/Dp,dry) that are used to infer the hygroscopicity parameter κ. Thermokinetic simulations were conducted to estimate the impact of partial particle volatilization within the DASH-SP across a range of sampling conditions. Analyses of GF and RI data as a function of air mass origin, dry size, and altitude are reported, in addition to κ values for the inorganic and organic fractions of aerosol. Average RI values are found to be fairly constant (1.52–1.54) for all air mass categories. An algorithm is used to compare size-resolved DASH-SP GF with bulk scattering f(RH = 80%) data obtained from a pair of nephelometers, and the results show that the two can only be reconciled if GF is assumed to decrease with increasing dry size above 400 nm (i.e., beyond the upper bound of DASH-SP measurements). Individual case studies illustrate variations of hygroscopicity as a function of dry size, environmental conditions, altitude, and composition.


Atmosphere | 2015

Frequency and Character of Extreme Aerosol Events in the Southwestern United States: A Case Study Analysis in Arizona

David Humberto Lopez; Michael R. Rabbani; Ewan Crosbie; Aishwarya Raman; Avelino F. Arellano; Armin Sorooshian

This study uses more than a decade’s worth of data across Arizona to characterize the spatiotemporal distribution, frequency, and source of extreme aerosol events, defined as when the concentration of a species on a particular day exceeds that of the average plus two standard deviations for that given month. Depending on which of eight sites studied, between 5% and 7% of the total days exhibited an extreme aerosol event due to either extreme levels of PM10, PM2.5, and/or fine soil. Grand Canyon exhibited the most extreme event days (120, i.e., 7% of its total days). Fine soil is the pollutant type that most frequently impacted multiple sites at once at an extreme level. PM10, PM2.5, fine soil, non-Asian dust, and Elemental Carbon extreme events occurred most frequently in August. Nearly all Asian dust extreme events occurred between March and June. Extreme Elemental Carbon events have decreased as a function of time with statistical significance, while other pollutant categories did not show any significant change. Extreme events were most frequent for the various pollutant categories on either Wednesday or Thursday, but there was no statistically significant difference in the number of events on any particular day or on weekends versus weekdays.


Journal of Geophysical Research | 2015

Surface and Airborne Measurements of Organosulfur and Methanesulfonate Over the Western United States and Coastal Areas.

Armin Sorooshian; Ewan Crosbie; L.C. Maudlin; Jong Sang Youn; Zhen Wang; Taylor Shingler; Amber M. Ortega; Scott Hersey; Roy K. Woods

This study reports on ambient measurements of organosulfur (OS) and methanesulfonate (MSA) over the western United States and coastal areas. Particulate OS levels are highest in summertime, and generally increase as a function of sulfate (a precursor) and sodium (a marine tracer) with peak levels at coastal sites. The ratio of OS to total sulfur (TS) is also highest at coastal sites, with increasing values as a function of Normalized Difference Vegetation Index (NDVI) and the ratio of organic carbon to elemental carbon. Correlative analysis points to significant relationships between OS and biogenic emissions from marine and continental sources, factors that coincide with secondary production, and vanadium due to a suspected catalytic role. A major OS species, methanesulfonate (MSA), was examined with intensive field measurements and the resulting data support the case for vanadiums catalytic influence. Mass size distributions reveal a dominant MSA peak between aerodynamic diameters of 0.32-0.56 μm at a desert and coastal site with nearly all MSA mass (≥ 84%) in sub-micrometer sizes; MSA:non-sea salt sulfate ratios vary widely as a function of particle size and proximity to the ocean. Airborne data indicate that relative to the marine boundary layer, particulate MSA levels are enhanced in urban and agricultural areas, and also the free troposphere when impacted by biomass burning. Some combination of fires and marine-derived emissions leads to higher MSA levels than either source alone. Finally, MSA differences in cloud water and out-of-cloud aerosol are discussed.


Journal of the Atmospheric Sciences | 2016

Stratocumulus Cloud Clearings and Notable Thermodynamic and Aerosol Contrasts across the Clear-Cloudy Interface

Ewan Crosbie; Zhen Wang; Armin Sorooshian; Patrick Y. Chuang; J. S. Craven; Matthew M. Coggon; Michael A. Brunke; Xubin Zeng; Haflidi Jonsson; Roy K. Woods; John H. Seinfeld

Data from three research flights, conducted over water near the California coast, are used to investigate the boundary between stratocumulus cloud decks and clearings of different sizes. Large clearings exhibit a diurnal cycle with growth during the day and contraction overnight and a multiday life cycle that can include oscillations between growth and decay, whereas a small coastal clearing was observed to be locally confined with a subdiurnal lifetime. Subcloud aerosol characteristics are similar on both sides of the clear–cloudy boundary in the three cases, while meteorological properties exhibit subtle, yet important, gradients, implying that dynamics, and not microphysics, is the primary driver for the clearing characteristics. Transects, made at multiple levels across the cloud boundary during one flight, highlight the importance of microscale (~1 km) structure in thermodynamic properties near the cloud edge, suggesting that dynamic forcing at length scales comparable to the convective eddy scale may be influential to the larger-scale characteristics of the clearing. These results have implications for modeling and observational studies of marine boundary layer clouds, especially in relation to aerosol–cloud interactions and scales of variability responsible for the evolution of stratocumulus clearings.


Journal of Geophysical Research | 2016

Observational evidence for the convective transport of dust over the central United States

C. A. Corr; Luke D. Ziemba; Eric Scheuer; Bruce E. Anderson; A. J. Beyersdorf; G. Chen; Ewan Crosbie; Richard Moore; Michael Shook; K. L. Thornhill; Edward L. Winstead; R. P. Lawson; M. C. Barth; Jason R. Schroeder; D. R. Blake; Jack E. Dibb

Bulk aerosol composition and aerosol size distributions measured aboard the DC-8 aircraft during the Deep Convective Clouds and Chemistry Experiment mission in May/June 2012 were used to investigate the transport of mineral dust through nine storms encountered over Colorado and Oklahoma. Measurements made at low altitudes (  9 km MSL). Storm mean outflow Ca2+ mass concentrations and total coarse (1 µm   50 µm) ice particle number concentrations was not evident; thus, the influence of ice shatter on these measurements was assumed small. Mean inflow aerosol number concentrations calculated over a diameter range (0.5 µm < diameter < 5.0 µm) relevant for proxy ice nuclei (NPIN) were ~15–300 times higher than ice particle concentrations for all storms. Ratios of predicted interstitial NPIN (calculated as the difference between inflow NPIN and ice particle concentrations) and inflow NPIN were consistent with those calculated for Ca2+ and Vc and indicated that on average less than 10% of the ingested NPIN were activated as ice nuclei during anvil formation. Deep convection may therefore represent an efficient transport mechanism for dust to the upper troposphere where these particles can function as ice nuclei cirrus forming in situ.


Journal of Climate | 2014

Intraseasonal Modulation of Synoptic-Scale Disturbances and Tropical Cyclone Genesis in the Eastern North Pacific

Ewan Crosbie; Yolande L. Serra

AbstractThe influence of the Madden–Julian oscillation (MJO) on synoptic-scale waves, important precursors to tropical cyclones and tropical cyclogenesis, is investigated using a regional model of the eastern North Pacific basin. Cyclogenesis frequency is evaluated with respect to the MJO using a combination of the regional model and the archive best-track data. The statistics of the regional model compare well to the data and suggest that the MJO predominantly deters cyclogenesis during the suppressed phase rather than enhances it during the active phase when compared to neutral conditions. Synoptic-scale variability of cloudiness and eddy kinetic energy and analysis of vortex track statistics show a consistent enhancement of wave strength during the active phases of the MJO supported by both barotropic energetics and tropospheric moisture availability. Vertical wind shear, of critical importance to cyclone development, also exhibits strong variability associated with the phase of the MJO but, contrary t...


Journal of Geophysical Research | 2016

Ambient observations of hygroscopic growth factor and f(RH) below 1: Case studies from surface and airborne measurements†

Taylor Shingler; Armin Sorooshian; Amber M. Ortega; Ewan Crosbie; Anna Wonaschütz; A. E. Perring; Andreas J. Beyersdorf; Luke D. Ziemba; Jose L. Jimenez; Pedro Campuzano-Jost; Tomas Mikoviny; Armin Wisthaler; Lynn M. Russell

This study reports on the first set of ambient observations of sub-1.0 hygroscopicity values (i.e., growth factor, ratio of humidified-to-dry diameter, GF=D p,wet /D p,dry and f(RH), ratio of humidified-to-dry scattering coefficients, less than 1) with consistency across different instruments, regions, and platforms. We utilized data from (i) a shipboard humidified tandem differential mobility analyzer (HTDMA) during Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) in 2011, (ii) multiple instruments on the DC-8 aircraft during Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) in 2013, as well as (iii) the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP) during measurement intensives during Summer 2014 and Winter 2015 in Tucson, Arizona. Sub-1.0 GFs were observed across the range of relative humidity (RH) investigated (75-95%), and did not show a RH-dependent trend in value below 1.0 or frequency of occurrence. A commonality between suppressed hygroscopicity in these experiments, including sub-1.0 GF, was the presence of smoke. Evidence of externally mixed aerosol, and thus multiple GFs, was observed during smoke periods resulting in at least one mode with GF < 1. Time periods during which the DASH-SP detected externally mixed aerosol coincide with sub-1.0 f(RH) observations. Mechanisms responsible for sub-1.0 hygroscopicity are discussed and include refractive index (RI) modifications due to aqueous processing, particle restructuring, and volatilization effects. To further investigate ambient observations of sub-1.0 GFs, f(RH), and particle restructuring, modifying hygroscopicity instruments with pre-humidification modules is recommended.


Journal of Geophysical Research | 2017

Relationships between giant sea salt particles and clouds inferred from aircraft physicochemical data

Hossein Dadashazar; Zhen Wang; Ewan Crosbie; Michael A. Brunke; Xubin Zeng; Haflidi Jonsson; Roy K. Woods; John H. Seinfeld; Armin Sorooshian

NASA [NNX14AM02G]; Office of Naval Research [N00014-10-1-0811, N00014-11-1-0783, N00014-10-1-0200, N00014-04-1-0118, N00014-16-1-2567]

Collaboration


Dive into the Ewan Crosbie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhen Wang

University of Arizona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jose L. Jimenez

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Roy K. Woods

Naval Postgraduate School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pedro Campuzano-Jost

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge