Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arnob Dutta is active.

Publication


Featured researches published by Arnob Dutta.


Genes & Development | 2011

The multifunctional Ccr4-Not complex directly promotes transcription elongation

Arnob Dutta; Jianhua Fu; David S. Gilmour; Joseph C. Reese

The Ccr4-Not complex has been implicated in the control of multiple steps of mRNA metabolism; however, its functions in transcription remain ambiguous. The discovery that Ccr4/Pop2 is the major cytoplasmic mRNA deadenylase and the detection of Not proteins within mRNA processing bodies have raised questions about the roles of the Ccr4-Not complex in transcription. Here we firmly establish Ccr4-Not as a positive elongation factor for RNA polymerase II (RNAPII). The Ccr4-Not complex is targeted to the coding region of genes in a transcription-dependent manner similar to RNAPII and promotes elongation in vivo. Furthermore, Ccr4-Not interacts directly with elongating RNAPII complexes and stimulates transcription elongation of arrested polymerase in vitro. Ccr4-Not can reactivate backtracked RNAPII using a mechanism different from that of the well-characterized elongation factor TFIIS. While not essential for its interaction with elongation complexes, Ccr4-Not interacts with the emerging transcript and promotes elongation in a manner dependent on transcript length, although this interaction is not required for it to bind RNAPII. Our comprehensive analysis shows that Ccr4-Not directly regulates transcription, and suggests it does so by promoting the resumption of elongation of arrested RNAPII when it encounters transcriptional blocks in vivo.


Journal of Biological Chemistry | 2011

Intermolecular Interactions within the Abundant DEAD-box Protein Dhh1 Regulate Its Activity in Vivo

Arnob Dutta; Suting Zheng; Deepti Jain; Craig E. Cameron; Joseph C. Reese

Dhh1 is a highly conserved DEAD-box protein that has been implicated in many processes involved in mRNA regulation. At least some functions of Dhh1 may be carried out in cytoplasmic foci called processing bodies (P-bodies). Dhh1 was identified initially as a putative RNA helicase based solely on the presence of conserved helicase motifs found in the superfamily 2 (Sf2) of DEXD/H-box proteins. Although initial mutagenesis studies revealed that the signature DEAD-box motif is required for Dhh1 function in vivo, enzymatic (ATPase or helicase) or ATP binding activities of Dhh1 or those of any its many higher eukaryotic orthologues have not been described. Here we provide the first characterization of the biochemical activities of Dhh1. Dhh1 has weaker RNA-dependent ATPase activity than other well characterized DEAD-box helicases. We provide evidence that intermolecular interactions between the N- and C-terminal RecA-like helicase domains restrict its ATPase activity; mutation of residues mediating these interactions enhanced ATP hydrolysis. Interestingly, the interdomain interaction mutant displayed enhanced mRNA turnover, RNA binding, and recruitment into cytoplasmic foci in vivo compared with wild type Dhh1. Also, we demonstrate that the ATPase activity of Dhh1 is not required for it to be recruited into cytoplasmic foci, but it regulates its association with RNA in vivo. We hypothesize that the activity of Dhh1 is restricted by interdomain interactions, which can be regulated by cellular factors to impart stringent control over this very abundant RNA helicase.


Molecular and Cellular Biology | 2015

Ccr4-Not and TFIIS Function Cooperatively To Rescue Arrested RNA Polymerase II

Arnob Dutta; Vinod Babbarwal; Jianhua Fu; Deborah Brunke-Reese; Diane M. Libert; Jonathan Willis; Joseph C. Reese

ABSTRACT Expression of the genome requires RNA polymerase II (RNAPII) to transcribe across many natural and unnatural barriers, and this transcription across barriers is facilitated by protein complexes called elongation factors (EFs). Genetic studies in Saccharomyces cerevisiae yeast suggest that multiple EFs collaborate to assist RNAPII in completing the transcription of genes, but the molecular mechanisms of how they cooperate to promote elongation are not well understood. The Ccr4-Not complex participates in multiple steps of mRNA metabolism and has recently been shown to be an EF. Here we describe how Ccr4-Not and TFIIS cooperate to stimulate elongation. We find that Ccr4-Not and TFIIS mutations show synthetically enhanced phenotypes, and biochemical analyses indicate that Ccr4-Not and TFIIS work synergistically to reactivate arrested RNAPII. Ccr4-Not increases the recruitment of TFIIS into elongation complexes and enhances the cleavage of the displaced transcript in backtracked RNAPII. This is mediated by an interaction between Ccr4-Not and the N terminus of TFIIS. In addition to revealing insights into how these two elongation factors cooperate to promote RNAPII elongation, our study extends the growing body of evidence suggesting that the N terminus of TFIIS acts as a docking/interacting site that allows it to synergize with other EFs to promote RNAPII transcription.


Genes & Development | 2014

Swi/Snf dynamics on stress-responsive genes is governed by competitive bromodomain interactions

Arnob Dutta; Madelaine Gogol; Jeong-Hoon Kim; Michaela Smolle; Swaminathan Venkatesh; Joshua M. Gilmore; Laurence Florens; Michael P. Washburn; Jerry L. Workman

The Swi/Snf chromatin remodeling complex functions to alter nucleosome positions by either sliding nucleosomes on DNA or the eviction of histones. The presence of histone acetylation and activator-dependent recruitment and retention of Swi/Snf is important for its efficient function. It is not understood, however, why such mechanisms are required to enhance Swi/Snf activity on nucleosomes. Snf2, the catalytic subunit of the Swi/Snf remodeling complex, has been shown to be a target of the Gcn5 acetyltransferase. Our study found that acetylation of Snf2 regulates both recruitment and release of Swi/Snf from stress-responsive genes. Also, the intramolecular interaction of the Snf2 bromodomain with the acetylated lysine residues on Snf2 negatively regulates binding and remodeling of acetylated nucleosomes by Swi/Snf. Interestingly, the presence of transcription activators mitigates the effects of the reduced affinity of acetylated Snf2 for acetylated nucleosomes. Supporting our in vitro results, we found that activator-bound genes regulating metabolic processes showed greater retention of the Swi/Snf complex even when Snf2 was acetylated. Our studies demonstrate that competing effects of (1) Swi/Snf retention by activators or high levels of histone acetylation and (2) Snf2 acetylation-mediated release regulate dynamics of Swi/Snf occupancy at target genes.


Genes & Development | 2014

Histone acetyltransferase Enok regulates oocyte polarization by promoting expression of the actin nucleation factor spire

Fu Huang; Ariel Paulson; Arnob Dutta; Swaminathan Venkatesh; Michaela Smolle; Susan M. Abmayr; Jerry L. Workman

KAT6 histone acetyltransferases (HATs) are highly conserved in eukaryotes and have been shown to play important roles in transcriptional regulation. Here, we demonstrate that the Drosophila KAT6 Enok acetylates histone H3 Lys 23 (H3K23) in vitro and in vivo. Mutants lacking functional Enok exhibited defects in the localization of Oskar (Osk) to the posterior end of the oocyte, resulting in loss of germline formation and abdominal segments in the embryo. RNA sequencing (RNA-seq) analysis revealed that spire (spir) and maelstrom (mael), both required for the posterior localization of Osk in the oocyte, were down-regulated in enok mutants. Chromatin immunoprecipitation showed that Enok is localized to and acetylates H3K23 at the spir and mael genes. Furthermore, Gal4-driven expression of spir in the germline can largely rescue the defective Osk localization in enok mutant ovaries. Our results suggest that the Enok-mediated H3K23 acetylation (H3K23Ac) promotes the expression of spir, providing a specific mechanism linking oocyte polarization to histone modification.


Cell Reports | 2017

Composition and Function of Mutant Swi/Snf Complexes

Arnob Dutta; Mihaela E. Sardiu; Madelaine Gogol; Joshua M. Gilmore; Daoyong Zhang; Laurence Florens; Susan M. Abmayr; Michael P. Washburn; Jerry L. Workman

The 12-subunit Swi/Snf chromatin remodeling complex is conserved from yeast to humans. It functions to alter nucleosome positions by either sliding nucleosomes on DNA or evicting histones. Interestingly, 20% of all human cancers carry mutations in subunits of the Swi/Snf complex. Many of these mutations cause protein instability and loss, resulting in partial Swi/Snf complexes. Although several studies have shown that histone acetylation and activator-dependent recruitment of Swi/Snf regulate its function, it is less well understood how subunits regulate stability and function of the complex. Using functional proteomic and genomic approaches, we have assembled the network architecture of yeast Swi/Snf. In addition, we find that subunits of the Swi/Snf complex regulate occupancy of the catalytic subunit Snf2, thereby modulating gene transcription. Our findings have direct bearing on how cancer-causing mutations in orthologous subunits of human Swi/Snf may lead to aberrant regulation of gene expression by this complex.


Molecular Cell | 2016

Diverse Activities of Histone Acylations Connect Metabolism to Chromatin Function

Arnob Dutta; Susan M. Abmayr; Jerry L. Workman

Modifications of histones play important roles in balancing transcriptional output. The discovery of acyl marks, besides histone acetylation, has added to the functional diversity of histone modifications. Since all modifications use metabolic intermediates as substrates for chromatin-modifying enzymes, the prevalent landscape of histone modifications in any cell type is a snapshot of its metabolic status. Here, we review some of the current findings of how differential use of histone acylations regulates gene expression as response to metabolic changes and differentiation programs.


Journal of Molecular Biology | 2017

Myeloid Leukemia Factor acts in a chaperone complex to regulate transcription factor stability and gene expression.

Jamie O. Dyer; Arnob Dutta; Madelaine Gogol; Vikki M. Weake; George Dialynas; Xilan Wu; Christopher Seidel; Ying Zhang; Laurence Florens; Michael P. Washburn; Susan M. Abmayr; Jerry L. Workman

Mutations that affect myelodysplasia/myeloid leukemia factor (MLF) proteins are associated with leukemia and several other cancers. However, with no strong homology to other proteins of known function, the role of MLF proteins in the cell has remained elusive. Here, we describe a proteomics approach that identifies MLF as a member of a nuclear chaperone complex containing a DnaJ protein, BCL2-associated anthanogene 2, and Hsc70. This complex associates with chromatin and regulates the expression of target genes. The MLF complex is bound to sites of nucleosome depletion and sites containing active chromatin marks (e.g., H3K4me3 and H3K4me1). Hence, MLF binding is enriched at promoters and enhancers. Additionally, the MLF-chaperone complex functions to regulate transcription factor stability, including the RUNX transcription factor involved in hematopoiesis. Although Hsc70 and other co-chaperones have been shown to play a role in nuclear translocation of a variety of proteins including transcription factors, our findings suggest that MLF and the associated co-chaperones play a direct role in modulating gene transcription.


Genes & Development | 2016

The Enok acetyltransferase complex interacts with Elg1 and negatively regulates PCNA unloading to promote the G1/S transition

Fu Huang; Anita Saraf; Laurence Florens; Thomas Kusch; Selene K. Swanson; Leanne T. Szerszen; Ge Li; Arnob Dutta; Michael P. Washburn; Susan M. Abmayr; Jerry L. Workman

KAT6 histone acetyltransferases (HATs) are highly conserved in eukaryotes and are involved in cell cycle regulation. However, information regarding their roles in regulating cell cycle progression is limited. Here, we report the identification of subunits of the Drosophila Enok complex and demonstrate that all subunits are important for its HAT activity. We further report a novel interaction between the Enok complex and the Elg1 proliferating cell nuclear antigen (PCNA)-unloader complex. Depletion of Enok in S2 cells resulted in a G1/S cell cycle block, and this block can be partially relieved by depleting Elg1. Furthermore, depletion of Enok reduced the chromatin-bound levels of PCNA in both S2 cells and early embryos, suggesting that the Enok complex may interact with the Elg1 complex and down-regulate its PCNA-unloading function to promote the G1/S transition. Supporting this hypothesis, depletion of Enok also partially rescued the endoreplication defects in Elg1-depleted nurse cells. Taken together, our study provides novel insights into the roles of KAT6 HATs in cell cycle regulation through modulating PCNA levels on chromatin.


bioRxiv | 2018

Topological Scoring of Protein Interaction Networks

Mihaela E. Sardiu; Joshua M. Gilmore; Brad D. Groppe; Arnob Dutta; Laurence Florens; Michael P. Washburn

It remains a significant challenge to define individual protein associations within networks where an individual protein can directly interact with other proteins and/or be part of large complexes, which contain functional modules. Here we demonstrate the topological scoring (TopS) algorithm for the analysis of quantitative proteomic analyses of affinity purifications. Data is analyzed in a parallel fashion where a bait protein is scored in an individual affinity purification by aggregating information from the entire dataset. A broad range of scores is obtained which indicate the enrichment of an individual protein in every bait protein analyzed. TopS was applied to interaction networks derived from human DNA repair proteins and yeast chromatin remodeling complexes. TopS captured direct protein interactions and modules within complexes. TopS is a rapid method for the efficient and informative computational analysis of datasets, is complementary to existing analysis pipelines, and provides new insights into protein interaction networks.

Collaboration


Dive into the Arnob Dutta's collaboration.

Top Co-Authors

Avatar

Jerry L. Workman

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Joseph C. Reese

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Laurence Florens

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Michael P. Washburn

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Susan M. Abmayr

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

David S. Gilmour

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Joshua M. Gilmore

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Madelaine Gogol

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jianhua Fu

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Michaela Smolle

Stowers Institute for Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge