Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arron B. Wolk is active.

Publication


Featured researches published by Arron B. Wolk.


Accounts of Chemical Research | 2014

Cryogenic Ion Chemistry and Spectroscopy

Arron B. Wolk; Christopher M. Leavitt; Etienne Garand; Mark A. Johnson

The use of mass spectrometry in macromolecular analysis is an incredibly important technique and has allowed efficient identification of secondary and tertiary protein structures. Over 20 years ago, Chemistry Nobelist John Fenn and co-workers revolutionized mass spectrometry by developing ways to non-destructively extract large molecules directly from solution into the gas phase. This advance, in turn, enabled rapid sequencing of biopolymers through tandem mass spectrometry at the heart of the burgeoning field of proteomics. In this Account, we discuss how cryogenic cooling, mass selection, and reactive processing together provide a powerful way to characterize ion structures as well as rationally synthesize labile reaction intermediates. This is accomplished by first cooling the ions close to 10 K and condensing onto them weakly bound, chemically inert small molecules or rare gas atoms. This assembly can then be used as a medium in which to quench reactive encounters by rapid evaporation of the adducts, as well as provide a universal means for acquiring highly resolved vibrational action spectra of the embedded species by photoinduced mass loss. Moreover, the spectroscopic measurements can be obtained with readily available, broadly tunable pulsed infrared lasers because absorption of a single photon is sufficient to induce evaporation. We discuss the implementation of these methods with a new type of hybrid photofragmentation mass spectrometer involving two stages of mass selection with two laser excitation regions interfaced to the cryogenic ion source. We illustrate several capabilities of the cryogenic ion spectrometer by presenting recent applications to peptides, a biomimetic catalyst, a large antibiotic molecule (vancomycin), and reaction intermediates pertinent to the chemistry of the ionosphere. First, we demonstrate how site-specific isotopic substitution can be used to identify bands due to local functional groups in a protonated tripeptide designed to stereoselectively catalyze bromination of biaryl substrates. This procedure directly reveals the particular H-bond donor and acceptor groups that enforce the folded structure of the bare ion as well as provide contact points for noncovalent interaction with substrates. We then show how photochemical hole-burning involving only vibrational excitations can be used in a double-resonance mode to systematically disentangle overlapping spectra that arise when several conformers of a dipeptide are prepared in the ion source. Finally, we highlight our ability to systematically capture reaction intermediates and spectroscopically characterize their structures. Through this method, we can identify the pathway for water-network-mediated, proton-coupled transformation of nitrosonium, NO(+) to HONO, a key reaction controlling the cations present in the ionosphere. Through this work, we reveal the critical role played by water molecules occupying the second solvation shell around the ion, where they stabilize the emergent product ion in a fashion reminiscent of the solvent coordinate responsible for the barrier to charge transfer in solution. Looking to the future, we predict that the capture and characterization of fleeting intermediate complexes in the homogeneous catalytic activation of small molecules like water, alkanes, and CO2 is a likely avenue rich with opportunity.


Science | 2012

Determination of Noncovalent Docking by Infrared Spectroscopy of Cold Gas-Phase Complexes

Etienne Garand; Michael Z. Kamrath; Peter A. Jordan; Arron B. Wolk; Christopher M. Leavitt; Anne B. McCoy; Scott J. Miller; Mark A. Johnson

Ties That Bind Almost by definition, effective catalysts bind their substrates for a very short time—releasing them quickly after helping them react and then moving on to bind new, as yet unreacted, substrates. This property engenders an efficient cycle, but it hinders study of the binding motif. Garand et al. (p. 694, published online 19 January; see the Perspective by Zwier) devised a technique to extract bound complexes from solution and freeze their conformations in cold, gas-phase clusters. Probing these clusters by vibrational spectroscopy in conjunction with theoretical calculations then allowed the sites of hydrogen bonding that hold the complexes together to be pinpointed. Conformationally freezing a weakly bound complex in the gas phase sheds light on its likely binding motifs in solution. Multidentate, noncovalent interactions between small molecules and biopolymer fragments are central to processes ranging from drug action to selective catalysis. We present a versatile and sensitive spectroscopic probe of functional groups engaged in hydrogen bonding in such contexts. This involves measurement of the frequency changes in specific covalent bonds upon complex formation, information drawn from otherwise transient complexes that have been extracted from solution and conformationally frozen near 10 kelvin in gas-phase clusters. Resonances closely associated with individual oscillators are easily identified through site-specific isotopic labeling, as demonstrated by application of the method to an archetypal system involving a synthetic tripeptide known to bind biaryl substrates through tailored hydrogen bonding to catalyze their asymmetric bromination. With such data, calculations readily converge on the plausible operative structures in otherwise computationally prohibitive, high-dimensionality landscapes.


Science | 2014

Vibrational spectral signature of the proton defect in the three-dimensional H+(H2O)21 cluster

Joseph A. Fournier; Christopher J. Johnson; Conrad T. Wolke; Gary H. Weddle; Arron B. Wolk; Mark A. Johnson

Blackjack water cluster detected Spectroscopy of protonated water clusters has played a pivotal role in elucidating the molecular arrangement of acid solutions. Whereas bulk liquids manifest broad spectral features, the cluster bands tend to be sharper. The 21-membered water cluster has for decades inspired particular interest on account of its stability and its place in the transition from two-dimensional to three-dimensional hydrogen-bonding network motifs, but the spectral signature of its bound proton has proved elusive. Fournier et al. have now detected this long-sought vibrational feature by applying an innovative ion cooling technique. Science, this issue p. 1009 An ion-cooling technique enables detection of a long-sought motif in the study of acid structure. The way in which a three-dimensional network of water molecules accommodates an excess proton is hard to discern from the broad vibrational spectra of dilute acids. The sharper bands displayed by cold gas-phase clusters, H+(H2O)n, are therefore useful because they encode the network-dependent speciation of the proton defect and yet are small enough to be accurately treated with electronic structure theory. We identified the previously elusive spectral signature of the proton defect in the three-dimensional cage structure adopted by the particularly stable H+(H2O)21 cluster. Cryogenically cooling the ion and tagging it with loosely bound deuterium (D2) enabled detection of its vibrational spectrum over the 600 to 4000 cm−1 range. The excess charge is consistent with a tricoordinated H3O+ moiety embedded on the surface of a clathrate-like cage.


Journal of Physical Chemistry Letters | 2012

Isomer-Specific IR-IR Double Resonance Spectroscopy of D2-Tagged Protonated Dipeptides Prepared in a Cryogenic Ion Trap.

Christopher M. Leavitt; Arron B. Wolk; Joseph A. Fournier; Michael Z. Kamrath; Etienne Garand; Michael J. Van Stipdonk; Mark A. Johnson

Isomer-specific vibrational predissociation spectra are reported for the gas-phase GlySarH(+) and SarSarH(+) [Gly = glycine; Sar = sarcosine] ions prepared by electrospray ionization and tagged with weakly bound D2 adducts using a cryogenic ion trap. The contributions of individual isomers to the overlapping vibrational band patterns are completely isolated using a pump-probe photochemical hole-burning scheme involving two tunable infrared lasers and two stages of mass selection (hence IR(2)MS(2)). These patterns are then assigned by comparison with harmonic (MP2/6-311+G(d,p)) spectra for various possible conformers. Both systems occur in two conformations based on cis and trans configurations with respect to the amide bond. In addition to the usual single intramolecular hydrogen bond motif between the protonated amine and the nearby amide oxygen atom, cis-SarSarH(+) adopts a previous unreported conformation in which both amino NHs act as H-bond donors. The correlated red shifts in the NH donor and C═O acceptor components of the NH···O═C linkage to the acid group are unambiguously assigned in the double H-bonded conformer.


Inorganic Chemistry | 2014

Modes of Activation of Organometallic Iridium Complexes for Catalytic Water and C–H Oxidation

Andrew J. Ingram; Arron B. Wolk; Cornelia Flender; Jialing Zhang; Christopher J. Johnson; Ulrich Hintermair; Robert H. Crabtree; Mark A. Johnson; Richard N. Zare

Sodium periodate (NaIO4) is added to Cp*Ir(III) (Cp* = C5Me5(-)) or (cod)Ir(I) (cod = cyclooctadiene) complexes, which are water and C-H oxidation catalyst precursors, and the resulting aqueous reaction is investigated from milliseconds to seconds using desorption electrospray ionization, electrosonic spray ionization, and cryogenic ion vibrational predissociation spectroscopy. Extensive oxidation of the Cp* ligand is observed, likely beginning with electrophilic C-H hydroxylation of a Cp* methyl group followed by nonselective pathways of further oxidative degradation. Evidence is presented that the supporting chelate ligand in Cp*Ir(chelate) precursors influences the course of oxidation and is neither eliminated from the coordination sphere nor oxidatively transformed. Isomeric products of initial Cp* oxidation are identified and structurally characterized by vibrational spectroscopy in conjunction with density functional theory (DFT) modeling. Less extensive but more rapid oxidation of the cod ligand is also observed in the (cod)Ir(I) complexes. The observations are consistent with the proposed role of Cp* and cod as sacrificial placeholder ligands that are oxidatively removed from the precursor complexes under catalytic conditions.


Analytical Chemistry | 2013

Integration of cryogenic ion vibrational predissociation spectroscopy with a mass spectrometric interface to an electrochemical cell.

Joseph A. Fournier; Arron B. Wolk; Mark A. Johnson

Cryogenic ion vibrational predissociation (CIVP) spectroscopy is used to structurally characterize electrochemically (EC)-generated oxidation products of the benchmark compound reserpine. Ionic products were isolated using EC-electrospray ionization (ESI) coupled to a 25 K ion trap prior to injection into a double-focusing, tandem time-of-flight photofragmentation mass spectrometer. Vibrational predissociation spectroscopy was carried out by photoevaporation of weakly bound N2 adducts over the range 800-3800 cm(-1) in a linear (i.e., single photon) action regime, thus enabling direct comparison of the experimental vibrational pattern with harmonic calculations. The locations of the NH and OH stretching fundamentals are most consistent with formation of 9-hydroxyreserpine, which is a different isomer than considered previously. This approach thus provides a powerful structural dimension for the analysis of electrochemical processes detected with the sensitivity of mass spectrometry.


Journal of Physical Chemistry A | 2014

Ion mobility spectrometry, infrared dissociation spectroscopy, and ab initio computations toward structural characterization of the deprotonated leucine-enkephalin peptide anion in the gas phase.

Florian Schinle; Christoph R. Jacob; Arron B. Wolk; Jean-François Greisch; Matthias Vonderach; Patrick Weis; Oliver Hampe; Mark A. Johnson; Manfred M. Kappes

Although the sequencing of protonated proteins and peptides with tandem mass spectrometry has blossomed into a powerful means of characterizing the proteome, much less effort has been directed at their deprotonated analogues, which can offer complementary sequence information. We present a unified approach to characterize the structure and intermolecular interactions present in the gas-phase pentapeptide leucine-enkephalin anion by several vibrational spectroscopy schemes as well as by ion-mobility spectrometry, all of which are analyzed with the help of quantum-chemical computations. The picture emerging from this study is that deprotonation takes place at the C terminus. In this configuration, the excess charge is stabilized by strong intramolecular hydrogen bonds to two backbone amide groups and thus provides a detailed picture of a potentially common charge accommodation motif in peptide anions.


Journal of the American Chemical Society | 2011

Vibrational characterization of simple peptides using cryogenic infrared photodissociation of H2-tagged, mass-selected ions

Michael Z. Kamrath; Etienne Garand; Peter A. Jordan; Christopher M. Leavitt; Arron B. Wolk; Michael J. Van Stipdonk; Scott J. Miller; Mark A. Johnson


Journal of Chemical Physics | 2014

Communication: He-tagged vibrational spectra of the SarGlyH+ and H+(H2O)2,3 ions: Quantifying tag effects in cryogenic ion vibrational predissociation (CIVP) spectroscopy

Christopher J. Johnson; Arron B. Wolk; Joseph A. Fournier; Erin N. Sullivan; Gary H. Weddle; Mark A. Johnson


Journal of the American Society for Mass Spectrometry | 2011

Characterizing the intramolecular H-bond and secondary structure in methylated GlyGlyH+ with H2 predissociation spectroscopy

Christopher M. Leavitt; Arron B. Wolk; Michael Z. Kamrath; Etienne Garand; Michael J. Van Stipdonk; Mark A. Johnson

Collaboration


Dive into the Arron B. Wolk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Etienne Garand

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne B. McCoy

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge