Arthur H.F. Hosie
University of Reading
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arthur H.F. Hosie.
Nature | 2003
Emma Lodwig; Arthur H.F. Hosie; Alex Bourdes; K. Findlay; D. Allaway; R. Karunakaran; J. A. Downie; Philip S. Poole
The biological reduction of atmospheric N2 to ammonium (nitrogen fixation) provides about 65% of the biospheres available nitrogen. Most of this ammonium is contributed by legume–rhizobia symbioses, which are initiated by the infection of legume hosts by bacteria (rhizobia), resulting in formation of root nodules. Within the nodules, rhizobia are found as bacteroids, which perform the nitrogen fixation: to do this, they obtain sources of carbon and energy from the plant, in the form of dicarboxylic acids. It has been thought that, in return, bacteroids simply provide the plant with ammonium. But here we show that a more complex amino-acid cycle is essential for symbiotic nitrogen fixation by Rhizobium in pea nodules. The plant provides amino acids to the bacteroids, enabling them to shut down their ammonium assimilation. In return, bacteroids act like plant organelles to cycle amino acids back to the plant for asparagine synthesis. The mutual dependence of this exchange prevents the symbiosis being dominated by the plant, and provides a selective pressure for the evolution of mutualism.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Tim H. Mauchline; J.E. Fowler; Alison K. East; A.L. Sartor; R. Zaheer; Arthur H.F. Hosie; Philip S. Poole; Turlough M. Finan
The number of solute-binding protein-dependent transporters in rhizobia is dramatically increased compared with the majority of other bacteria so far sequenced. This increase may be due to the high affinity of solute-binding proteins for solutes, permitting the acquisition of a broad range of growth-limiting nutrients from soil and the rhizosphere. The transcriptional induction of these transporters was studied by creating a suite of plasmid and integrated fusions to nearly all ATP-binding cassette (ABC) and tripartite ATP-independent periplasmic (TRAP) transporters of Sinorhizobium meliloti. In total, specific inducers were identified for 76 transport systems, amounting to ≈47% of the ABC uptake systems and 53% of the TRAP transporters in S. meliloti. Of these transport systems, 64 are previously uncharacterized in Rhizobia and 24 were induced by solutes not known to be transported by ABC- or TRAP-uptake systems in any organism. This study provides a global expression map of one of the largest transporter families (transportome) and an invaluable tool to both understand their solute specificity and the relationships between members of large paralogous families.
Journal of Bacteriology | 2002
Arthur H.F. Hosie; D. Allaway; C.S. Galloway; H.A. Dunsby; Philip S. Poole
Amino acid uptake by Rhizobium leguminosarum is dominated by two ABC transporters, the general amino acid permease (Aap) and the branched-chain amino acid permease (Bra(Rl)). Characterization of the solute specificity of Bra(Rl) shows it to be the second general amino acid permease of R. leguminosarum. Although Bra(Rl) has high sequence identity to members of the family of hydrophobic amino acid transporters (HAAT), it transports a broad range of solutes, including acidic and basic polar amino acids (L-glutamate, L-arginine, and L-histidine), in addition to neutral amino acids (L-alanine and L-leucine). While amino and carboxyl groups are required for transport, solutes do not have to be alpha-amino acids. Consistent with this, Bra(Rl) is the first ABC transporter to be shown to transport gamma-aminobutyric acid (GABA). All previously identified bacterial GABA transporters are secondary carriers of the amino acid-polyamine-organocation (APC) superfamily. Also, transport by Bra(Rl) does not appear to be stereospecific as D amino acids cause significant inhibition of uptake of L-glutamate and L-leucine. Unlike all other solutes tested, L-alanine uptake is not dependent on solute binding protein BraC(Rl). Therefore, a second, unidentified solute binding protein may interact with the BraDEFG(Rl) membrane complex during L-alanine uptake. Overall, the data indicate that Bra(Rl) is a general amino acid permease of the HAAT family. Furthermore, Bra(Rl) has the broadest solute specificity of any characterized bacterial amino acid transporter.
Research in Microbiology | 2001
Arthur H.F. Hosie; Philip S. Poole
There are two subfamilies of ABC uptake systems for amino acids in bacteria, the polar amino acid transport family and the hydrophobic amino acid transport family. We consider the general properties of these families and we examine the specific transporters. Focusing on some of the best-studied ATP binding cassette transporters we also examine the mechanism of amino acid uptake, paying particular attention to the question of bidirectionality of solute movement.
Infection and Immunity | 2009
Shilpa Basavanna; Suneeta Khandavilli; Jose Yuste; Jonathan Cohen; Arthur H.F. Hosie; Alexander J. Webb; Gavin H. Thomas; Jeremy S. Brown
ABSTRACT Bacterial ABC transporters are an important class of transmembrane transporters that have a wide variety of substrates and are important for the virulence of several bacterial pathogens, including Streptococcus pneumoniae. However, many S. pneumoniae ABC transporters have yet to be investigated for their role in virulence. Using insertional duplication mutagenesis mutants, we investigated the effects on virulence and in vitro growth of disruption of 9 S. pneumoniae ABC transporters. Several were partially attenuated in virulence compared to the wild-type parental strain in mouse models of infection. For one ABC transporter, required for full virulence and termed LivJHMGF due to its similarity to branched-chain amino acid (BCAA) transporters, a deletion mutant (ΔlivHMGF) was constructed to investigate its phenotype in more detail. When tested by competitive infection, the ΔlivHMGF strain had reduced virulence in models of both pneumonia and septicemia but was fully virulent when tested using noncompetitive experiments. The ΔlivHMGF strain had no detectable growth defect in defined or complete laboratory media. Recombinant LivJ, the substrate binding component of the LivJHMGF, was shown by both radioactive binding experiments and tryptophan fluorescence spectroscopy to specifically bind to leucine, isoleucine, and valine, confirming that the LivJHMGF substrates are BCAAs. These data demonstrate a previously unsuspected role for BCAA transport during infection for S. pneumoniae and provide more evidence that functioning ABC transporters are required for the full virulence of bacterial pathogens.
Journal of Bacteriology | 2008
Alexander J. Webb; Karen A. Homer; Arthur H.F. Hosie
Streptococcus mutans has a large number of transporters apparently involved in the uptake of carbohydrates. At least two of these, the multiple sugar metabolism transporter, MsmEFGK, and the previously uncharacterized MalXFGK, are members of the ATP-binding cassette (ABC) superfamily. Mutation analysis revealed that the MsmEFGK and MalXFGK transporters are principally involved in the uptake of distinct disaccharides and/or oligosaccharides. Furthermore, the data also indicated an unusual protein interaction between the components of these two related transporters. Strains lacking msmE (which encodes a solute binding protein) can no longer utilize raffinose or stachyose but grow normally on maltodextrins in the absence of MalT, a previously characterized EII(mal) phosphotransferase system component. In contrast, a mutant of malX (which encodes a solute binding protein) cannot utilize maltodextrins but grows normally on raffinose or stachyose. Radioactive uptake assays confirmed that MalX, but not MsmE, is required for uptake of [U-14C]maltotriose and that MalXFGK is principally involved in the uptake of maltodextrins with as many as 7 glucose units. Surprisingly, inactivation of the corresponding ATPase components did not result in an equivalent abolition of growth: the malK mutant can grow on maltotetraose as a sole carbon source, and the msmK mutant can utilize raffinose. We propose that the ATPase domains of these ABC transporters can interact with either their own or the alternative transporter complex. Such unexpected interaction of ATPase subunits with distinct membrane components to form complete multiple ABC transporters may be widespread in bacteria.
Journal of Bacteriology | 2002
Arthur H.F. Hosie; D. Allaway; Philip S. Poole
Amino acid transport by Rhizobium leguminosarum is dominated by two ABC transporters, the general amino acid permease (Aap) and the branched-chain amino acid permease (Bra). However, mutation of these transporters does not prevent this organism from utilizing alanine for growth. An R. leguminosarum permease (MctP) has been identified which is required for optimal growth on alanine as a sole carbon and nitrogen source. Characterization of MctP confirmed that it transports alanine (K(m) = 0.56 mM) and other monocarboxylates such as lactate and pyruvate (K(m) = 4.4 and 3.8 micro M, respectively). Uptake inhibition studies indicate that propionate, butyrate, alpha-hydroxybutyrate, and acetate are also transported by MctP, with the apparent affinity for solutes demonstrating a preference for C3-monocarboxylates. MctP has significant sequence similarity to members of the sodium/solute symporter family. However, sequence comparisons suggest that it is the first characterized permease of a new subfamily of transporters. While transport via MctP was inhibited by CCCP, it was not apparently affected by the concentration of sodium. In contrast, glutamate uptake in R. leguminosarum by the Escherichia coli GltS system did require sodium, which suggests that MctP may be proton coupled. Uncharacterized members of this new subfamily have been identified in a broad taxonomic range of species, including proteobacteria of the beta-subdivision, gram-positive bacteria, and archaea. A two-component sensor-regulator (MctSR), encoded by genes adjacent to mctP, is required for activation of mctP expression.
PLOS ONE | 2010
Jurgen Prell; Alexandre Bourdès; Shalini Kumar; Emma Lodwig; Arthur H.F. Hosie; Seonag Kinghorn; James White; Philip S. Poole
Background Rhizobium leguminosarum bv. viciae mutants unable to transport branched-chain amino acids via the two main amino acid ABC transport complexes AapJQMP and BraDEFGC produce a nitrogen starvation phenotype when inoculated on pea (Pisum sativum) plants [1], [2]. Bacteroids in indeterminate pea nodules have reduced abundance and a lower chromosome number. They reduce transcription of pathways for branched-chain amino acid biosynthesis and become dependent on their provision by the host. This has been called “symbiotic auxotrophy”. Methodology/Principal Findings A region important in solute specificity was identified in AapQ and changing P144D in this region reduced branched-chain amino acid transport to a very low rate. Strains carrying P144D were still fully effective for N2 fixation on peas demonstrating that a low rate of branched amino acid transport in R. leguminosarum bv. viciae supports wild-type rates of nitrogen fixation. The importance of branched-chain amino acid transport was then examined in other legume-Rhizobium symbioses. An aap bra mutant of R. leguminosarum bv. phaseoli also showed nitrogen starvation symptoms when inoculated on French bean (Phaseolus vulgaris), a plant producing determinate nodules. The phenotype is different from that observed on pea and is accompanied by reduced nodule numbers and nitrogen fixation per nodule. However, an aap bra double mutant of Sinorhizobium meliloti 2011 showed no phenotype on alfalfa (Medicago sativa). Conclusions/Significance Symbiotic auxotrophy occurs in both determinate pea and indeterminate bean nodules demonstrating its importance for bacteroid formation and nodule function in legumes with different developmental programmes. However, only small quantities of branched chain amino acids are needed and symbiotic auxotrophy did not occur in the Sinorhizobium meliloti-alfalfa symbiosis under the conditions measured. The contrasting symbiotic phenotypes of aap bra mutants inoculated on different legumes probably reflects altered timing of amino acid availability, development of symbiotic auxotrophy and nodule developmental programmes.
Molecular Microbiology | 2001
Arthur H.F. Hosie; D. Allaway; Marion Jones; David L. Walshaw; Andrew W. B. Johnston; Philip S. Poole
The ATP‐binding cassette (ABC) transporter superfamily is one of the most widespread of all gene families and currently has in excess of 1100 members in organisms ranging from the Archaea to man. The movement of the diverse solutes of ABC transporters has been accepted as being strictly unidirectional, with recent models indicating that they are irreversible. However, contrary to this paradigm, we show that three solute‐binding protein‐dependent (SBP) ABC transporters of amino acids, i.e. the general amino acid permease (Aap) and the branched‐chain amino acid permease (Bra) of Rhizobium leguminosarum and the histidine permease (His) of Salmonella typhimurium, are bidirectional, being responsible for efflux in addition to the uptake of solutes. The net solute movement measured for an ABC transporter depends on the rates of uptake and efflux, which are independent; a plateau is reached when both are saturated. SBP ABC transporters promote active uptake because, although the Vmax values for uptake and efflux are not significantly different, there is a 103−104 higher affinity for uptake of solute compared with efflux. Therefore, the SBP ABC transporters are able to support a substantial concentration gradient and provide a net uptake of solutes into bacterial cells.
Fems Microbiology Letters | 2010
Emmanuele Severi; Arthur H.F. Hosie; Judith A. Hawkhead; Gavin H. Thomas
The function of sialic acids in the biology of bacterial pathogens is reflected by the diverse range of solute transporters that can recognize these sugar acids. Here, we use an Escherichia coliDeltananT strain to characterize the function of known and proposed bacterial sialic acid transporters. We discover that the STM1128 gene from Salmonella enterica serovar Typhimurium, which encodes a member of the sodium solute symporter family, is able to restore growth on sialic acid to the DeltananT strain and is able to transport [(14)C]-sialic acid. Using the DeltananT genetic background, we performed a direct in vivo comparison of the transport properties of the STM1128 protein with those of sialic acid transporters of the major facilitator superfamily and tripartite ATP-independent periplasmic families, E. coli NanT and Haemophilus influenzae SiaPQM, respectively. This revealed that both STM1128 and SiaPQM are sodium-dependent and, unlike SiaPQM, both STM1128 and NanT are reversible secondary carriers, demonstrating qualitative functional differences in the properties of sialic acid transporters used by bacteria that colonize humans.