Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arthur J. Fischer is active.

Publication


Featured researches published by Arthur J. Fischer.


Applied Physics Letters | 2007

Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes

Martin F. Schubert; Sameer Chhajed; Jong Kyu Kim; E. Fred Schubert; Daniel D. Koleske; Mary H. Crawford; Stephen R. Lee; Arthur J. Fischer; Gerald Thaler; M. Banas

Measurements of light-output power versus current are performed for GaInN∕GaN light-emitting diodes grown on GaN-on-sapphire templates with different threading dislocation densities. Low-defect-density devices exhibit a pronounced efficiency peak followed by droop as current increases, whereas high-defect-density devices show low peak efficiencies and little droop. The experimental data are analyzed with a rate equation model to explain this effect. Analysis reveals that dislocations do not strongly impact high-current performance; instead they contribute to increased nonradiative recombination at lower currents and a suppression of peak efficiency. The characteristics of the dominant recombination mechanism at high currents are consistent with processes involving carrier leakage.


Applied Physics Letters | 2009

Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities

Qi Dai; Martin F. Schubert; Min-Ho Kim; Jong Kyu Kim; E. F. Schubert; Daniel D. Koleske; Mary H. Crawford; Stephen R. Lee; Arthur J. Fischer; Gerald Thaler; M. Banas

Room-temperature photoluminescence measurements are performed on GaInN/GaN multiple quantum wells grown on GaN-on-sapphire templates with different threading-dislocation densities. The internal quantum efficiencies as a function of carrier concentration and the non-radiative coefficients are obtained.


Applied Physics Letters | 2005

Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods

Y. Xi; J.-Q. Xi; Th. Gessmann; Jay M. Shah; Jong Kyu Kim; E. F. Schubert; Arthur J. Fischer; Mary H. Crawford; Katherine H. A. Bogart; A. A. Allerman

The junction temperature of AlGaN ultraviolet light-emitting diodes emitting at 295nm is measured by using the temperature coefficients of the diode forward voltage and emission peak energy. The high-energy slope of the spectrum is explored to measure the carrier temperature. A linear relation between junction temperature and current is found. Analysis of the experimental methods reveals that the diode-forward voltage is the most accurate (±3°C). A theoretical model for the dependence of the diode forward voltage (Vf) on junction temperature (Tj) is developed that takes into account the temperature dependence of the energy gap. A thermal resistance of 87.6K∕W is obtained with the device mounted with thermal paste on a heat sink.


Applied Physics Letters | 2004

Room-temperature direct current operation of 290 nm light-emitting diodes with milliwatt power levels

Arthur J. Fischer; A. A. Allerman; Mary H. Crawford; Katherine H. A. Bogart; Stephen R. Lee; Robert Kaplar; W. W. Chow; S. R. Kurtz; Kristine Wanta Fullmer; Jeffrey J. Figiel

Ultraviolet light-emitting diodes (LEDs) have been grown by metalorganic vapor phase epitaxy using AlN nucleation layers and thick n-type Al0.48Ga0.52N current spreading layers. The active region is composed of three Al0.36Ga0.64N quantum wells with Al0.48Ga0.52N barriers for emission at 290 nm. Devices were designed as bottom emitters and flip-chip bonded to thermally conductive submounts using an interdigitated contact geometry. The ratio of quantum well emission to 330 nm sub-band gap emission is as high as 125:1 for these LEDs. Output power as high as 1.34 mW at 300 mA under direct current operation has been demonstrated with a forward voltage of 9.4 V. A peak external quantum efficiency of 0.18% has been measured at an operating current of 55 mA.


Applied Physics Letters | 2002

Improved brightness of 380 nm GaN light emitting diodes through intentional delay of the nucleation island coalescence

Daniel D. Koleske; Arthur J. Fischer; A. A. Allerman; Christine C. Mitchell; Karen Charlene Cross; S. R. Kurtz; Jeffrey J. Figiel; Kristine Wanta Fullmer; William G. Breiland

Ultraviolet light emitting diodes (LEDs) have been grown using metalorganic vapor phase epitaxy, while monitoring the 550 nm reflected light intensity. During nucleation of GaN on sapphire, the transition from three-dimensional (3D) grain growth to two-dimensional (2D) coalesced growth was intentionally delayed in time by lowering the NH3 flow during the initial high temperature growth. Initially, when the reflectance signal is near zero, the GaN film is rough and composed of partly coalesced 3D grains. Eventually, the reflected light intensity recovers as the 2D morphology evolves. For 380 nm LEDs grown on 3D nucleation layers, we observe increased light output. For LEDs fabricated on GaN films with a longer recovery time an output power of 1.3 mW at 20 mA current was achieved.


IEEE Photonics Technology Letters | 2001

Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation

Erik W. Young; K.D. Choquette; Shun Lien Chuang; Kent M. Geib; Arthur J. Fischer; A. A. Allerman

Using a hybrid ion implanted/selectively oxidized device structure, we report high-power single-mode operation of an 850-nm vertical-cavity laser. Under continuous-wave operation, >4 mW of single-mode power with 45 dB of side-mode suppression is achieved. The spectral behavior under pulsed modulation is determined to be influenced by thermal lensing. When biased to threshold, single-mode operation with >35-dB side-mode suppression is obtained for large signal modulation.


Applied Physics Letters | 2010

Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells

Imogen M. Pryce; Daniel D. Koleske; Arthur J. Fischer; Harry A. Atwater

We demonstrate enhanced external quantum efficiency and current-voltage characteristics due to scattering by 100 nm silver nanoparticles in a single 2.5 nm thick InGaN quantum well photovoltaic device. Nanoparticle arrays were fabricated on the surface of the device using an anodic alumina template masking process. The Ag nanoparticles increase light scattering, light trapping, and carrier collection in the III-N semiconductor layers leading to enhancement of the external quantum efficiency by up to 54%. Additionally, the short-circuit current in cells with 200 nm p-GaN emitter regions is increased by 6% under AM 1.5 illumination. AFORS-Het simulation software results were used to predict cell performance and optimize emitter layer thickness.


Applied Physics Letters | 2010

The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices

Jonathan J. Wierer; Arthur J. Fischer; Daniel D. Koleske

The impact of piezoelectric polarization and nonradiative recombination on the short-circuit current densities (Jsc) of (0001) face GaN/InGaN photovoltaic devices is demonstrated. P-i-n diodes consisting of 170 nm thick intrinsic In0.09Ga0.91N layers sandwiched by GaN layers exhibit low Jsc∼40 μA/cm2. The piezoelectric polarization at the GaN/InGaN heterointerfaces creates drift currents opposite in direction needed for efficient carrier collection. Also, nonradiative recombination centers produce short carrier lifetimes, limiting Jsc. Alternative structures with intrinsic InGaN layers sandwiched by n-type InGaN or graded InyGa1−yN (y=0–0.09) layer and a p-type In0.015Ga0.985N layer have favorable potentials, longer carrier lifetimes, and improve Jsc to ∼0.40 mA/cm2.


Japanese Journal of Applied Physics | 2005

Junction Temperature in Ultraviolet Light-Emitting Diodes

Y. Xi; Thomas Gessmann; J.-Q. Xi; Jong Kyu Kim; Jay M. Shah; E. Fred Schubert; Arthur J. Fischer; Mary H. Crawford; Katherine H. A. Bogart; Andrew A. Allerman

The junction temperature and thermal resistance of AlGaN and GaInN ultraviolet (UV) light-emitting diodes (LEDs) emitting at 295 and 375 nm, respectively, are measured using the temperature coefficient of diode-forward voltage. An analysis of the experimental method reveals that the diode-forward voltage has a high accuracy of ±3°C. A comprehensive theoretical model for the dependence of diode-forward voltage (Vf) on junction temperature (Tj) is developed taking into account the temperature dependence of the energy gap and the temperature coefficient of diode resistance. The difference between the junction voltage temperature coefficient (dVj/dT) and the forward voltage temperature coefficient (dVf/dT) is shown to be caused by diode series resistance. The data indicate that the n-type neutral regions are the dominant resistive element in deep-UV devices. A linear relationship between junction temperature and current is found. Junction temperature is also measured by the emission-peak-shift method. The high-energy slope of the spectrum is explored in the measurement of carrier temperature.


Applied Physics Letters | 1999

Coupled resonator vertical-cavity laser diode

Arthur J. Fischer; Kent D. Choquette; Weng W. Chow; H. Q. Hou; Kent M. Geib

We report the operation of an electrically injected monolithic coupled resonator vertical cavity laser which consists of an active cavity containing In{sub x}Ga{sub 1{minus}x}As quantum wells optically coupled to a passive GaAs cavity. This device demonstrates novel modulation characteristics arising from dynamic changes in the coupling between the active and passive cavities. A composite mode theory is used to model the output modulation of the coupled resonator vertical cavity laser. It is shown that the laser intensity can be modulated by either forward or reverse biasing the passive cavity. Under forward biasing, the modulation is due to carrier induced changes in the refractive index, while for reverse bias operation the modulation is caused by field dependent cavity enhanced absorption.

Collaboration


Dive into the Arthur J. Fischer's collaboration.

Top Co-Authors

Avatar

Daniel D. Koleske

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Mary H. Crawford

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

A. A. Allerman

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

George T. Wang

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Stephen R. Lee

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Andrew A. Allerman

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey Y. Tsao

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Robert Kaplar

Sandia National Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge