Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arthur Tuttle is active.

Publication


Featured researches published by Arthur Tuttle.


Plant Disease | 2007

Maturation of Thyriothecia of Schizothyrium pomi on the Reservoir Host Rubus allegheniensis

Daniel R. Cooley; Susan M. Lerner; Arthur Tuttle

Flyspeck disease caused by the Ascomycete fungus Schizothyrium pomi is a major component of a summer disease complex that has become an increasing problem on apple in the northeastern United States. This study describes the development of thyriothecia of S. pomi on one of its major reservoir hosts, wild blackberry, and suggests that temperature drives thyriothecium maturation. An empirical model relating thyriothecium maturity to degree-days from apple leaf budbreak in Massachusetts had a high coefficient of determination, R2 = 0.90. Ninety percent of thyriothecia matured between 540 and 1,625 degree-days from the budbreak biofix. S. pomi produced one generation of asci per year on blackberry. This discrete maturation period occurred well before signs of disease developed on apple fruit and before production of conidia. Considering that fungicide applications for scab management in commercial apple orchards also will protect fruit from flyspeck during early fruit development, it is unlikely that ascospores produced on reservoir hosts directly infect fruit. Instead, they probably initiate infections in reservoir hosts adjacent to commercial orchards, which produce conidia that are the inoculum which infects apple fruit in commercial production.


Journal of Economic Entomology | 2011

Effectiveness of Odor-Baited Trap Trees for Plum Curculio (Coleoptera: Curculionidae) Monitoring in Commercial Apple Orchards in the Northeast

Jaime C. Piñero; Arthur M. Agnello; Arthur Tuttle; Tracy C. Leskey; Heather Faubert; Glen Koehler; Lorraine M. Los; Glenn Morin; Kathleen Leahy; Daniel R. Cooley; Ronald J. Prokopy

ABSTRACT The plum curculio, Conotrachelus nenuphar (Herbst), is a key pest of pome and stone fruit in eastern and central North America. For effective management of this insect pest in commercial apple (Malus spp.) orchards in the northeastern United States and Canada, one of the greatest challenges has been to determine the need for and timing of insecticide applications that will protect apple fruit from injury by adults. In a 2004–2005 study, we assessed the efficacy and economic viability of a reduced-risk integrated pest management strategy involving an odor-baited trap tree approach to determine need for and timing of insecticide use against plum curculio based on appearance of fresh egg-laying scars. Evaluations took place in commercial apple orchards in seven northeastern U.S. states. More specifically, we compared the trap-tree approach with three calendar-driven whole-block sprays and with heat-unit accumulation models that predict how long insecticide should be applied to orchard trees to prevent injury by plum curculio late in the season. Trap tree plots received a whole-plot insecticide spray by the time of petal fall, and succeeding sprays (if needed) were applied to peripheral-row trees only, depending on a threshold of one fresh plum curculio egg-laying scar out of 25 fruit sampled from a single trap tree. In both years, level of plum curculio injury to fruit sampled from perimeter-row, the most interior-row trees and whole-plot injury in trap tree plots did not differ significantly from that recorded in plots subject to conventional management or in plots managed using the heat-unit accumulation approach. The amount of insecticide used in trap tree plots was reduced at least by 43% compared with plots managed with the conventional approach. Advantages and potential pitfalls of the bio-based trap tree approach to plum curculio monitoring in apple orchards are discussed.


Environmental Entomology | 2016

Inclusion of Specialist and Generalist Stimuli in Attract-and-Kill Programs: Their Relative Efficacy in Apple Maggot Fly (Diptera: Tephritidae) Pest Management.

William R. Morrison; Doo-Hyung Lee; W. Harvey Reissig; David Combs; Kathleen Leahy; Arthur Tuttle; Daniel R. Cooley; Tracy C. Leskey

Abstract Investigating the chemical ecology of agricultural systems continues to be a salient part of integrated pest management programs. Apple maggot fly, a key pest of apple in eastern North America, is a visual specialist with attraction to host fruit-mimicking cues. These cues have been incorporated into red spherical traps used for both monitoring and behaviorally based management. Incorporating generalist or specialist olfactory cues can potentially increase the overall success of this management system. The primary aim of this study was to evaluate the attractiveness of a generalist olfactory cue, ammonium carbonate, and the specialist olfactory cue, a five-component apple volatile blend, when included as a component of a red attracticidal sphere system. Secondly, we assessed how critical it was to maintain minimal deviation from the optimal, full-round specialist visual stimulus provided by red spheres. Finally, attracticidal spheres were deployed with specialist olfactory cues in commercial apple orchards to evaluate their potential for effective management of apple maggot. Ammonium carbonate did not increase residency, feeding time, or mortality in the laboratory-based trials. Field deployment of specialist olfactory cues increased apple maggot captures on red spheres, while the generalist cue did not. Apple maggot tolerated some deviation from the optimal visual stimulus without reducing captures on red spheres. Attracticidal spheres hung in perimeter trees in orchards resulted in acceptable and statistically identical levels of control compared with standard insecticide programs used by growers. Overall, our study contributes valuable information for developing a reliable attract-and-kill system for apple maggot.


Environmental Entomology | 2014

Evaluating electrophysiological and behavioral responses to volatiles for improvement of odor-baited trap tree management of Conotrachelus nenuphar (Coleoptera: Curculionidae).

Tracy C. Leskey; Virginia Hock; Gérald Chouinard; Daniel Cormier; Kathleen Leahy; Daniel R. Cooley; Arthur Tuttle; Alan Eaton; Aijun Zhang

ABSTRACT Plum curculio, Conotrachelus nenuphar (Herbst), one of the most important pests of apple in eastern and central North America, is usually managed in New England apple orchards by multiple full-block insecticide applications. Efforts to reduce insecticide inputs against plum curculio include using an “attract and kill” approach: odor-baited trap trees deployed in the perimeter row of apple orchards. The standard approach is based on baiting apple trees with two olfactory stimuli, the fruit volatile benzaldehyde and the aggregation pheromone of plum curculio, grandisoic acid. We attempted to improve attraction, aggregation, and retention of adult plum curculios within specific baited trap tree canopies within apple orchards using an additional host plant volatile found to be highly stimulating in electroantennogram studies, trans-2-hexenal. We also attempted to increase aggregation using increased release rates of grandisoic acid. We found that trans-2-hexenal did not provide increased aggregation when deployed as an additional attractant within trap trees or when conversely deployed as a “push” component or repellent in perimeter trees lateral to the baited trap tree. Although increasing the release rate of grandisoic acid 5× actually appeared to increase overall aggregation within trap trees, it was not significantly different than that obtained using the standard dose. Therefore, we believe that the standard olfactory stimuli are sufficient to provide aggregation within trap trees, but that other means should be used to manage them after their arrival.


Environmental Entomology | 1991

Mortality of eggs of Colorado potato beetle (Coleoptera: Chrysomelidae) from predation by Coleomegilla maculata (Coleoptera: Coccinellidae)

Ruth Hazzard; David N. Ferro; R. G. Van Driesche; Arthur Tuttle


Environmental Entomology | 1991

Ovipositional and Flight Behavior of Overwintered Colorado Potato Beetle (Coleoptera: Chrysomelidae)

David N. Ferro; Arthur Tuttle; Donald C. Weber


Journal of Economic Entomology | 2006

Effectiveness of Protein Baits on Melon Fly and Oriental Fruit Fly (Diptera: Tephritidae): Attraction and Feeding

James D. Barry; Neil W. Miller; Jaime C. Piñero; Arthur Tuttle; Ronald F. L. Mau; Roger I. Vargas


Journal of Economic Entomology | 1993

Residual activity of insecticides under field conditions for controlling the Colorado potato beetle (Coleoptera: Chrysomelidae)

David N. Ferro; Quan-Chang Yuan; Andrew C. Slocombe; Arthur Tuttle


Environmental Pollution | 2004

Assessing plant response to ambient ozone: growth of young apple trees in open-top chambers and corresponding ambient air plots

William J. Manning; Daniel R. Cooley; Arthur Tuttle; M.A. Frenkel; Chris Bergweiler


Biological Control | 2013

Using entomopathogenic nematodes for biological control of plum curculio, Conotrachelus nenuphar: Effects of irrigation and species in apple orchards

David I. Shapiro-Ilan; Starker E. Wright; Arthur Tuttle; Daniel R. Cooley; Tracy C. Leskey

Collaboration


Dive into the Arthur Tuttle's collaboration.

Top Co-Authors

Avatar

Daniel R. Cooley

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

David N. Ferro

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Tracy C. Leskey

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Jaime C. Piñero

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Wesley R. Autio

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Aijun Zhang

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Alan Eaton

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Andrew C. Slocombe

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Bergweiler

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge