Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arunoday Bhan is active.

Publication


Featured researches published by Arunoday Bhan.


Journal of Molecular Biology | 2013

Antisense Transcript Long Noncoding RNA (lncRNA) HOTAIR is Transcriptionally Induced by Estradiol

Arunoday Bhan; Imran Hussain; Khairul I. Ansari; Sahba Kasiri; Aarti Bashyal; Subhrangsu S. Mandal

HOTAIR (HOX antisense intergenic RNA) is a long noncoding RNA (lncRNA) that is transcribed from the antisense strand of homeobox C gene locus in chromosome 12. HOTAIR coordinates with chromatin-modifying enzymes and regulates gene silencing. It is overexpressed in various carcinomas including breast cancer. Herein, we demonstrated that HOTAIR is crucial for cell growth and viability and its knockdown induced apoptosis in breast cancer cells. We also demonstrated that HOTAIR is transcriptionally induced by estradiol (E2). Its promoter contains multiple functional estrogen response elements (EREs). Estrogen receptors (ERs) along with various ER coregulators such as histone methylases MLL1 (mixed lineage leukemia 1) and MLL3 and CREB-binding protein/p300 bind to the promoter of HOTAIR in an E2-dependent manner. Level of histone H3 lysine-4 trimethylation, histone acetylation, and RNA polymerase II recruitment is enriched at the HOTAIR promoter in the presence of E2. Knockdown of ERs and MLLs downregulated the E2-induced HOTAIR expression. Thus, similar to protein-coding gene transcription, E2-induced transcription of antisense transcript HOTAIR is coordinated via ERs and ER coregulators, and this mechanism of HOTAIR overexpression potentially contributes towards breast cancer progression.


Biochimica et Biophysica Acta | 2015

LncRNA HOTAIR: A master regulator of chromatin dynamics and cancer.

Arunoday Bhan; Subhrangsu S. Mandal

Non-coding RNAs (ncRNAs) are emerging classes of regulatory RNA that play key roles in various cellular and physiological processes such as in gene regulation, chromatin dynamics, cell differentiation, and development. NcRNAs are dysregulated in a variety of human disorders including cancers, neurological disorders, and immunological disorders. The mechanisms through which ncRNAs regulate various biological processes and human diseases still remain elusive. HOX antisense intergenic RNA (HOTAIR) is a recently discovered long non-coding RNA (lncRNA) that plays critical role in gene regulation and chromatin dynamics, appears to be misregulated in a variety of cancers. HOTAIR interacts with key epigenetic regulators such as histone methyltransferase PRC2 and histone demethylase LSD1 and regulates gene silencing. Here, we have reviewed recent advancements in understanding the functions and regulation of HOTAIR and its association with cancer and other diseases.


The Journal of Steroid Biochemistry and Molecular Biology | 2014

Bisphenol-A and diethylstilbestrol exposure induces the expression of breast cancer associated long noncoding RNA HOTAIR in vitro and in vivo

Arunoday Bhan; Imran Hussain; Khairul I. Ansari; Samara A.M. Bobzean; Linda I. Perrotti; Subhrangsu S. Mandal

Antisense transcript, long non-coding RNA HOTAIR is a key player in gene silencing and breast cancer and is transcriptionally regulated by estradiol. Here, we have investigated if HOTAIR expression is misregulated by bisphenol-A (BPA) and diethylstilbestrol (DES). Our findings demonstrate BPA and DES induce HOTAIR expression in cultured human breast cancer cells (MCF7) as well as in vivo in the mammary glands of rat. Luciferase assay showed that HOTAIR promoter estrogen-response-elements (EREs) are induced by BPA and DES. Estrogen-receptors (ERs) and ER-coregulators such as MLL-histone methylases (MLL1 and MLL3) bind to the HOTAIR promoter EREs in the presence of BPA and DES, modify chromatin (histone methylation and acetylation) and lead to gene activation. Knockdown of ERs down-regulated the BPA and DES-induced expression of HOTAIR. In summary, our results demonstrate that BPA and DES exposure alters the epigenetic programming of the HOTAIR promoters leading to its endocrine disruption in vitro and in vivo.


ChemMedChem | 2014

Long Noncoding RNAs: Emerging Stars in Gene Regulation, Epigenetics and Human Disease

Arunoday Bhan; Subhrangsu S. Mandal

Noncoding RNAs (ncRNAs) are classes of transcripts that are encoded by the genome and transcribed but never get translated into proteins. Though not translated into proteins, ncRNAs play pivotal roles in a variety of cellular functions. Here, we review the functions of long noncoding RNAs (lncRNAs) and their implications in various human diseases. Increasing numbers of studies demonstrate that lncRNAs play critical roles in regulation of protein‐coding genes, maintenance of genomic integrity, dosage compensation, genomic imprinting, mRNA processing, cell differentiation, and development. Misregulation of lncRNAs is associated with a variety of human diseases, including cancer, immune and neurological disorders. Different classes of lncRNAs, their functions, mechanisms of action, and associations with different human diseases are summarized in detail, highlighting their as yet untapped potential in therapy.


Cancer Research | 2017

Long Noncoding RNA and Cancer: A New Paradigm

Arunoday Bhan; Milad Soleimani; Subhrangsu S. Mandal

In addition to mutations or aberrant expression in the protein-coding genes, mutations and misregulation of noncoding RNAs, in particular long noncoding RNAs (lncRNA), appear to play major roles in cancer. Genome-wide association studies of tumor samples have identified a large number of lncRNAs associated with various types of cancer. Alterations in lncRNA expression and their mutations promote tumorigenesis and metastasis. LncRNAs may exhibit tumor-suppressive and -promoting (oncogenic) functions. Because of their genome-wide expression patterns in a variety of tissues and their tissue-specific expression characteristics, lncRNAs hold strong promise as novel biomarkers and therapeutic targets for cancer. In this article, we have reviewed the emerging functions and association of lncRNAs in different types of cancer and discussed their potential implications in cancer diagnosis and therapy. Cancer Res; 77(15); 3965-81. ©2017 AACR.


Journal of Molecular Biology | 2014

Histone methyltransferase EZH2 is transcriptionally induced by estradiol as well as estrogenic endocrine disruptors bisphenol-A and diethylstilbestrol.

Arunoday Bhan; Imran Hussain; Khairul I. Ansari; Samara A.M. Bobzean; Linda I. Perrotti; Subhrangsu S. Mandal

Enhancer of Zeste homolog 2 (EZH2), a methyltransferase specific to histone 3 lysine 27, is a critical player in gene silencing and is overexpressed in breast cancer. Our studies demonstrate that EZH2 is transcriptionally induced by estradiol in cultured breast cancer cells and in the mammary glands of ovariectomized rats. EZH2 promoter contains multiple functional estrogen-response elements. Estrogen receptors (ERs) and ER coregulators such as mixed lineage leukemia (MLL) histone methylases (MLL2 and MLL3) and histone acetyltransferase CBP/P300 bind to the EZH2 promoter in the presence of estradiol and regulate estradiol-induced EZH2 expression. EZH2 expression is also increased upon exposure to estrogenic endocrine disrupting chemicals (EDCs) such as bisphenol-A (BPA) and diethylstilbestrol (DES). Similar to estradiol, BPA and DES-induced EZH2 expression is coordinated by ERs, MLLs and CBP/P300. In summary, we demonstrate that EZH2 is transcriptionally regulated by estradiol in vitro and in vivo, and its expression is potentially dysregulated upon exposure to estrogenic EDCs.


FEBS Journal | 2012

Homeodomain‐containing protein HOXB9 regulates expression of growth and angiogenic factors, facilitates tumor growth in vitro and is overexpressed in breast cancer tissue

Bishakha Shrestha; Khairul I. Ansari; Arunoday Bhan; Sahba Kasiri; Imran Hussain; Subhrangsu S. Mandal

HOXB9 is a homeobox‐containing gene and is critical for the development of mammary gland and sternum. HOXB9 is also regulated by estrogen and is critical for angiogenesis. We investigated the biochemical roles of HOXB9 and its homeodomain in cell‐cycle progression and tumorigenesis. Our studies demonstrated that HOXB9 is overexpressed in breast cancer tissue. HOXB9 overexpression stimulated 3D formation in soft agar assay. HOXB9 binds to the promoters of various tumor growth and angiogenic factors and regulates their expression. The homeodomain of HOXB9 plays crucial roles in transcriptional regulation of tumor growth factors and also in 3D colony formation, indicating crucial roles of the HOXB9 homeodomain in tumorigenesis. Overall, we demonstrated that HOXB9 is a critical regulator of tumor growth factors and is associated with tumorigenesis.


Gene | 2016

Endocrine disrupting chemical, bisphenol-A, induces breast cancer associated gene HOXB9 expression in vitro and in vivo

Paromita Deb; Arunoday Bhan; Imran Hussain; Khairul I. Ansari; Samara A.M. Bobzean; Tej K. Pandita; Linda I. Perrotti; Subhrangsu S. Mandal

HOXB9 is a homeobox-containing gene that plays a key role in mammary gland development and is associated with breast and other types of cancer. Here, we demonstrate that HOXB9 expression is transcriptionally regulated by estradiol (E2), in vitro and in vivo. We also demonstrate that the endocrine disrupting chemical bisphenol-A (BPA) induces HOXB9 expression in cultured human breast cancer cells (MCF7) as well as in vivo in the mammary glands of ovariectomized (OVX) rats. Luciferase assay showed that estrogen-response-elements (EREs) in the HOXB9 promoter are required for BPA-induced expression. Estrogen-receptors (ERs) and ER-co-regulators such as MLL-histone methylase (MLL3), histone acetylases, CBP/P300, bind to the HOXB9 promoter EREs in the presence of BPA, modify chromatin (histone methylation and acetylation) and lead to gene activation. In summary, our results demonstrate that BPA exposure, like estradiol, increases HOXB9 expression in breast cells both in vitro and in vivo through a mechanism that involves increased recruitment of transcription and chromatin modification factors.


Biochimica et Biophysica Acta | 2015

Bisphenol-A induces expression of HOXC6, an estrogen-regulated homeobox-containing gene associated with breast cancer

Imran Hussain; Arunoday Bhan; Khairul I. Ansari; Paromita Deb; Samara A.M. Bobzean; Linda I. Perrotti; Subhrangsu S. Mandal

HOXC6 is a homeobox-containing gene associated with mammary gland development and is overexpressed in variety of cancers including breast and prostate cancers. Here, we have examined the expression of HOXC6 in breast cancer tissue, investigated its transcriptional regulation via estradiol (E2) and bisphenol-A (BPA, an estrogenic endocrine disruptor) in vitro and in vivo. We observed that HOXC6 is differentially over-expressed in breast cancer tissue. E2 induces HOXC6 expression in cultured breast cancer cells and in mammary glands of Sprague Dawley rats. HOXC6 expression is also induced upon exposure to BPA both in vitro and in vivo. Estrogen-receptor-alpha (ERα) and ER-coregulators such as MLL-histone methylases are bound to the HOXC6 promoter upon exposure to E2 or BPA and that resulted in increased histone H3K4-trimethylation, histone acetylation, and recruitment of RNA polymerase II at the HOXC6 promoter. HOXC6 overexpression induces expression of tumor growth factors and facilitates growth 3D-colony formation, indicating its potential roles in tumor growth. Our studies demonstrate that HOXC6, which is a critical player in mammary gland development, is upregulated in multiple cases of breast cancer, and is transcriptionally regulated by E2 and BPA, in vitro and in vivo.


RSC Advances | 2013

Antisense oligonucleotide mediated knockdown of HOXC13 affects cell growth and induces apoptosis in tumor cells and over expression of HOXC13 induces 3D-colony formation

Sahba Kasiri; Khairul I. Ansari; Imran Hussain; Arunoday Bhan; Subhrangsu S. Mandal

HOXC13 is a homeobox containing gene that plays crucial roles in hair development and origin of replication. Herein, we investigated the biochemical functions of HOXC13 and explored its potential roles in tumor cell viability. We have designed a phosphorothioate based antisense-oligonucleotide that specifically knockdown HOXC13 in cultured cells. Cell viability and cytotoxicity assays demonstrated that HOXC13 is essential for cell growth and viability. Antisense-mediated knockdown of HOXC13 affected the cell viability and induced apoptosis in cultured tumor cells. HOXC13 regulates the expression of cyclins and antisense-mediated knockdown of HOXC13 resulted in cell cycle arrest and apoptosis in colon cancer cells. Finally over expression of HOXC13 resulted in 3D-colony formation in soft-agar assay indicating its potential roles in cell proliferation and tumorigenesis.

Collaboration


Dive into the Arunoday Bhan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Khairul I. Ansari

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Imran Hussain

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Paromita Deb

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Linda I. Perrotti

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Samara A.M. Bobzean

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Milad Soleimani

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Sahba Kasiri

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Carl J. Lovely

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Jayanta Das

University of Texas at Arlington

View shared research outputs
Researchain Logo
Decentralizing Knowledge