Sahba Kasiri
University of Texas at Arlington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sahba Kasiri.
Journal of Molecular Biology | 2013
Arunoday Bhan; Imran Hussain; Khairul I. Ansari; Sahba Kasiri; Aarti Bashyal; Subhrangsu S. Mandal
HOTAIR (HOX antisense intergenic RNA) is a long noncoding RNA (lncRNA) that is transcribed from the antisense strand of homeobox C gene locus in chromosome 12. HOTAIR coordinates with chromatin-modifying enzymes and regulates gene silencing. It is overexpressed in various carcinomas including breast cancer. Herein, we demonstrated that HOTAIR is crucial for cell growth and viability and its knockdown induced apoptosis in breast cancer cells. We also demonstrated that HOTAIR is transcriptionally induced by estradiol (E2). Its promoter contains multiple functional estrogen response elements (EREs). Estrogen receptors (ERs) along with various ER coregulators such as histone methylases MLL1 (mixed lineage leukemia 1) and MLL3 and CREB-binding protein/p300 bind to the promoter of HOTAIR in an E2-dependent manner. Level of histone H3 lysine-4 trimethylation, histone acetylation, and RNA polymerase II recruitment is enriched at the HOTAIR promoter in the presence of E2. Knockdown of ERs and MLLs downregulated the E2-induced HOTAIR expression. Thus, similar to protein-coding gene transcription, E2-induced transcription of antisense transcript HOTAIR is coordinated via ERs and ER coregulators, and this mechanism of HOTAIR overexpression potentially contributes towards breast cancer progression.
Journal of Inorganic Biochemistry | 2009
Khairul I. Ansari; James D. Grant; Sahba Kasiri; Getachew A. Woldemariam; Bishakha Shrestha; Subhrangsu S. Mandal
In order to explore the apoptotic and anti-tumor activities of metallo-salens, we synthesized several Mn(III)-salen derivatives (compds. 1-9) and analyzed their effects on cultured human cancer and non-cancer cells. Our results demonstrated that Mn(III)-salen derivatives affect cell viability, induce nuclear condensation and fragmentation in breast cancer cells (MCF7). Mn(III)-salen derivatives also induced caspase-3/7 activation and release of cytochrome-c from the mitochondria to cytosol suggesting that Mn(III)-salen derivatives induce apoptosis in human cells via mitochondrial pathway. Importantly, the nature of the substituent and the bridging spacer between diimino groups on the salen ligand play critical roles in determining the apoptotic activities of Mn(III)-salen derivatives. The IC(50) values for the active Mn(III)-salen derivatives lie within the range of 11-40microM in MCF7 cells. Most importantly, several Mn(III)-salen derivatives showed preferential cytotoxicity (2- to 5-fold) toward malignant breast cells (MCF7) over a non-malignant breast epithelial cell line (MCF10). Notably, the level of cytotoxicity and selectivity of the Mn(III)-salen derivatives towards MCF7 and MCF10 cells are very similar to cisplatin which indicate that Mn(III)-salens are potential novel anti-tumor agent.
Organic and Biomolecular Chemistry | 2009
Khairul I. Ansari; James D. Grant; Getachew A. Woldemariam; Sahba Kasiri; Subhrangsu S. Mandal
To understand the relationship between DNA damage potential and biochemical activities, we synthesized nine different Fe(III)-salen derivatives with varying substituents, and analyzed their in vitro DNA cleavage properties and biochemical effects on cultured human cells. Our results demonstrated that Fe(III)-salen complexes affect cell viability, induce nuclear fragmentation, and activate caspases and apoptosis in cultured human cells. The nature and the position of the substituents in the Fe(III)-salen complexes play critical roles in determining their apoptotic efficiencies. Most importantly, our results demonstrated that the in vitro DNA cleavage activities of Fe(III)-salen complexes are not essential for their apoptotic activities in human cells. Instead, the lesser their DNA cleavage activity the greater is their apoptotic efficiency.
Journal of Molecular Endocrinology | 2012
Khairul I. Ansari; Imran Hussain; Sahba Kasiri; Subhrangsu S. Mandal
HOXC10 is a critical player in the development of spinal cord, formation of neurons, and associated with human leukemia. We found that HOXC10 is overexpressed in breast cancer and transcriptionally regulated by estrogen (17β-estradiol, E(2)). The HOXC10 promoter contains several estrogen response elements (ERE1-7, half-sites). A luciferase-based reporter assay showed that ERE1 and ERE6 of HOXC10 promoter are E(2) responsive. ERα and ERβ play critical roles in E(2)-mediated activation of HOXC10. Knockdown of ERα and ERβ downregulated E(2)-induced HOXC10 expression. ERα and ERβ bind to ERE1 and ERE6 regions in an E(2)-dependent manner. Additionally, knockdown of histone methylases MLL3 and MLL4 (but not MLL1 and MLL2) diminished E(2)-induced expression of HOXC10. MLL3 and MLL4 were bound to the ERE1 and ERE6 regions of HOXC10 promoter in an E(2)-dependent manner. Overall, we demonstrated that HOXC10 is overexpressed in breast cancer, and it is an E(2)-responsive gene. Histone methylases MLL3 and MLL4, along with ERs, regulate HOXC10 gene expression in the presence of E(2).
Journal of Molecular Biology | 2011
Khairul I. Ansari; Imran Hussain; Bishakha Shrestha; Sahba Kasiri; Subhrangsu S. Mandal
Homeobox (HOX)-containing gene HOXC6 is a critical player in mammary gland development and milk production, and is overexpressed in breast and prostate cancers. We demonstrated that HOXC6 is transcriptionally regulated by estrogen (E2). HOXC6 promoter contains two putative estrogen response elements (EREs), termed as ERE1(1/2) and ERE2(1/2). Promoter analysis using luciferase-based reporter assay demonstrated that both EREs are responsive to E2, with ERE1(1/2) being more responsive than ERE2(1/2). Estrogen receptors (ERs) ERα and ERβ bind to these EREs in an E2-dependent manner, and antisense-mediated knockdown of ERs suppressed the E2-dependent activation of HOXC6 expression. Similarly, knockdown of histone methylases MLL2 and MLL3 decreased the E2-mediated activation of HOXC6. However, depletion of MLL1 or MLL4 showed no significant effect. MLL2 and MLL3 were bound to the HOXC6 EREs in an E2-dependent manner. In contrast, MLL1 and MLL4 that were bound to the HOXC6 promoter in the absence of E2 decreased upon exposure to E2. MLL2 and MLL3 play key roles in histone H3 lysine-4 trimethylation and in the recruitment of general transcription factors and RNA polymerase II in the HOXC6 promoter during E2-dependent transactivation. Nuclear receptor corepressors N-CoR and SAFB1 were bound in the HOXC6 promoter in the absence of E2, and that binding was decreased upon E2 treatment, indicating their critical roles in suppressing HOXC6 gene expression under nonactivated conditions. Knockdown of either ERα or ERβ abolished E2-dependent recruitment of MLL2 and MLL3 into the HOXC6 promoter, demonstrating key roles of ERs in the recruitment of these mixed lineage leukemias into the HOXC6 promoter. Overall, our studies demonstrated that HOXC6 is an E2-responsive gene, and that histone methylases MLL2 and MLL3, in coordination with ERα and ERβ, transcriptionally regulate HOXC6 in an E2-dependent manner.
Inorganic Chemistry | 2012
Kaushik Ghosh; Pramod Kumar; Varun Mohan; Udai P. Singh; Sahba Kasiri; Subhrangsu S. Mandal
The copper complex [Cu((t)BuPhimp)(Cl)] (1) derived from tridentate ligand (t)BuPhimpH having N(2)O donors was synthesized, and its molecular structure was determined. A phenoxyl radical complex was generated in solution at room temperature using Ce(IV). The nuclease and anticancer activities of 1 were investigated. The roles of the tert-butyl group and singlet oxygen in the DNA cleavage activity were also discussed.
Dalton Transactions | 2009
Khairul I. Ansari; Sahba Kasiri; James D. Grant; Subhrangsu S. Mandal
We analyzed the apoptosis and anti-tumour activities of several Mn(III)-salen and -salphen complexes (1-14) towards three different cultured human cancer and non-cancer cells. We demonstrated that most of the Mn(III)-salen and -salphen complexes affect cell viability and induce apoptosis in MCF7 cells. Biochemically active Mn(III)-salen and -salphen complexes induced nuclear fragmentation and release of cytochrome c from the mitochondria to cytosol indicating involvement of mitochondrial pathway of apoptosis. The nature and position of the substituents and the bridging group on the salen ligands play crucial roles in determining the apoptotic activities of Mn(III)-salen and -salphen complexes. The IC50 values for the active Mn(III)-salen complexes ranged between 12 and 55 microM. For Mn(III)-salen complexes with ethylenediamine bridges, methoxy substituted complexes were more active than the corresponding hydroxy derivatives. However, this correlation does not hold when the bridging group was changed from ethylenediamine to o-phenylenediamine. Importantly, several Mn(III)-salen and -salphen complexes showed about 2-3 fold selectivity toward cancer cells such as MCF7 (breast cancer), and CCL228 (colon cancer) over a normal non-malignant cell MCF10 (breast epithelial cells) indicating their potential application towards novel anti-tumour therapy.
FEBS Journal | 2009
Khairul I. Ansari; Sahba Kasiri; Imran Hussain; Subhrangsu S. Mandal
HOXC13, a homeobox‐containing gene, is involved in hair development and human leukemia. The regulatory mechanism that drives HOXC13 expression is mostly unknown. Our studies have demonstrated that HOXC13 is transcriptionally activated by the steroid hormone estrogen (17β‐estradiol; E2). The HOXC13 promoter contains several estrogen‐response elements (EREs), including ERE1 and ERE2, which are close to the transcription start site, and are associated with E2‐mediated activation of HOXC13. Knockdown of the estrogen receptors (ERs) ERα and ERβ suppressed E2‐mediated activation of HOXC13. Similarly, knockdown of mixed lineage leukemia histone methylase (MLL)3 suppressed E2‐induced activation of HOXC13. MLLs (MLL1–MLL4) were bound to the HOXC13 promoter in an E2‐dependent manner. Knockdown of either ERα or ERβ affected the E2‐dependent binding of MLLs (MLL1–MLL4) into HOXC13 EREs, suggesting critical roles of ERs in recruiting MLLs in the HOXC13 promoter. Overall, our studies have demonstrated that HOXC13 is transcriptionally regulated by E2 and MLLs, which, in coordination with ERα and ERβ, play critical roles in this process. Although MLLs are known to regulate HOX genes, the roles of MLLs in hormone‐mediated regulation of HOX genes are unknown. Herein, we have demonstrated that MLLs are critical players in E2‐dependent regulation of the HOX gene.
Oncogene | 2013
Khairul I. Ansari; Sahba Kasiri; Subhrangsu S. Mandal
Mixed lineage leukemias (MLLs) are human histone H3 lysine-4-specific methyl transferases that have critical roles in gene expression, epigenetics and cancer. Herein, we demonstrated that antisense-mediated knockdown of MLL1 induced cell-cycle arrest and apoptosis in cultured cells. Intriguingly, application of MLL1 antisense specifically knocked down MLL1 in vivo and suppressed the growth of xenografted cervical tumor implanted in nude mouse. MLL1 knockdown downregulated various growth and angiogenic factors, such as HIF1α, VEGF and CD31, in tumor tissue affecting tumor growth. MLL1 is overexpressed along the line of vascular network and localized adjacent to endothelial cell layer expressing CD31, indicating potential roles of MLL1 in vasculogenesis. MLL1 is also overexpressed in the hypoxic regions along with HIF1α. Overall, our studies demonstrated that MLL1 is a key factor in hypoxia signaling, vasculogenesis and tumor growth, and its depletion suppresses tumor growth in vivo, indicating its potential in novel cancer therapy.
FEBS Journal | 2012
Bishakha Shrestha; Khairul I. Ansari; Arunoday Bhan; Sahba Kasiri; Imran Hussain; Subhrangsu S. Mandal
HOXB9 is a homeobox‐containing gene and is critical for the development of mammary gland and sternum. HOXB9 is also regulated by estrogen and is critical for angiogenesis. We investigated the biochemical roles of HOXB9 and its homeodomain in cell‐cycle progression and tumorigenesis. Our studies demonstrated that HOXB9 is overexpressed in breast cancer tissue. HOXB9 overexpression stimulated 3D formation in soft agar assay. HOXB9 binds to the promoters of various tumor growth and angiogenic factors and regulates their expression. The homeodomain of HOXB9 plays crucial roles in transcriptional regulation of tumor growth factors and also in 3D colony formation, indicating crucial roles of the HOXB9 homeodomain in tumorigenesis. Overall, we demonstrated that HOXB9 is a critical regulator of tumor growth factors and is associated with tumorigenesis.