Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Khairul I. Ansari is active.

Publication


Featured researches published by Khairul I. Ansari.


Journal of Molecular Biology | 2013

Antisense Transcript Long Noncoding RNA (lncRNA) HOTAIR is Transcriptionally Induced by Estradiol

Arunoday Bhan; Imran Hussain; Khairul I. Ansari; Sahba Kasiri; Aarti Bashyal; Subhrangsu S. Mandal

HOTAIR (HOX antisense intergenic RNA) is a long noncoding RNA (lncRNA) that is transcribed from the antisense strand of homeobox C gene locus in chromosome 12. HOTAIR coordinates with chromatin-modifying enzymes and regulates gene silencing. It is overexpressed in various carcinomas including breast cancer. Herein, we demonstrated that HOTAIR is crucial for cell growth and viability and its knockdown induced apoptosis in breast cancer cells. We also demonstrated that HOTAIR is transcriptionally induced by estradiol (E2). Its promoter contains multiple functional estrogen response elements (EREs). Estrogen receptors (ERs) along with various ER coregulators such as histone methylases MLL1 (mixed lineage leukemia 1) and MLL3 and CREB-binding protein/p300 bind to the promoter of HOTAIR in an E2-dependent manner. Level of histone H3 lysine-4 trimethylation, histone acetylation, and RNA polymerase II recruitment is enriched at the HOTAIR promoter in the presence of E2. Knockdown of ERs and MLLs downregulated the E2-induced HOTAIR expression. Thus, similar to protein-coding gene transcription, E2-induced transcription of antisense transcript HOTAIR is coordinated via ERs and ER coregulators, and this mechanism of HOTAIR overexpression potentially contributes towards breast cancer progression.


FEBS Journal | 2010

Mixed lineage leukemia: roles in gene expression, hormone signaling and mRNA processing

Khairul I. Ansari; Subhrangsu S. Mandal

Mixed lineage leukemias (MLLs) are an evolutionarily conserved trithorax family of human genes that play critical roles in HOX gene regulation and embryonic development. MLL1 is well known to be rearranged in myeloid and lymphoid leukemias in children and adults. There are several MLL family proteins such as MLL1, MLL2, MLL3, MLL4, MLL5, Set1A and Set1B, and each possesses histone H3 lysine 4 (H3K4)‐specific methyltransferase activity and has critical roles in gene activation and epigenetics. Although MLLs are recognized as major regulators of gene activation, their mechanism of action, target genes and the distinct functions of different MLLs remain elusive. Recent studies demonstrate that besides H3K4 methylation and HOX gene regulation, MLLs have much wider roles in gene activation and regulate diverse other genes. Interestingly, several MLLs interact with nuclear receptors and have critical roles in steroid‐hormone‐mediated gene activation and signaling. In this minireview, we summarize recent advances in understanding the roles of MLLs in gene regulation and hormone signaling and highlight their potential roles in mRNA processing.


The Journal of Steroid Biochemistry and Molecular Biology | 2014

Bisphenol-A and diethylstilbestrol exposure induces the expression of breast cancer associated long noncoding RNA HOTAIR in vitro and in vivo

Arunoday Bhan; Imran Hussain; Khairul I. Ansari; Samara A.M. Bobzean; Linda I. Perrotti; Subhrangsu S. Mandal

Antisense transcript, long non-coding RNA HOTAIR is a key player in gene silencing and breast cancer and is transcriptionally regulated by estradiol. Here, we have investigated if HOTAIR expression is misregulated by bisphenol-A (BPA) and diethylstilbestrol (DES). Our findings demonstrate BPA and DES induce HOTAIR expression in cultured human breast cancer cells (MCF7) as well as in vivo in the mammary glands of rat. Luciferase assay showed that HOTAIR promoter estrogen-response-elements (EREs) are induced by BPA and DES. Estrogen-receptors (ERs) and ER-coregulators such as MLL-histone methylases (MLL1 and MLL3) bind to the HOTAIR promoter EREs in the presence of BPA and DES, modify chromatin (histone methylation and acetylation) and lead to gene activation. Knockdown of ERs down-regulated the BPA and DES-induced expression of HOTAIR. In summary, our results demonstrate that BPA and DES exposure alters the epigenetic programming of the HOTAIR promoters leading to its endocrine disruption in vitro and in vivo.


Journal of Inorganic Biochemistry | 2009

Manganese(III)-salens induce tumor selective apoptosis in human cells.

Khairul I. Ansari; James D. Grant; Sahba Kasiri; Getachew A. Woldemariam; Bishakha Shrestha; Subhrangsu S. Mandal

In order to explore the apoptotic and anti-tumor activities of metallo-salens, we synthesized several Mn(III)-salen derivatives (compds. 1-9) and analyzed their effects on cultured human cancer and non-cancer cells. Our results demonstrated that Mn(III)-salen derivatives affect cell viability, induce nuclear condensation and fragmentation in breast cancer cells (MCF7). Mn(III)-salen derivatives also induced caspase-3/7 activation and release of cytochrome-c from the mitochondria to cytosol suggesting that Mn(III)-salen derivatives induce apoptosis in human cells via mitochondrial pathway. Importantly, the nature of the substituent and the bridging spacer between diimino groups on the salen ligand play critical roles in determining the apoptotic activities of Mn(III)-salen derivatives. The IC(50) values for the active Mn(III)-salen derivatives lie within the range of 11-40microM in MCF7 cells. Most importantly, several Mn(III)-salen derivatives showed preferential cytotoxicity (2- to 5-fold) toward malignant breast cells (MCF7) over a non-malignant breast epithelial cell line (MCF10). Notably, the level of cytotoxicity and selectivity of the Mn(III)-salen derivatives towards MCF7 and MCF10 cells are very similar to cisplatin which indicate that Mn(III)-salens are potential novel anti-tumor agent.


Organic and Biomolecular Chemistry | 2009

Iron(III)-salen complexes with less DNA cleavage activity exhibit more efficient apoptosis in MCF7 cells

Khairul I. Ansari; James D. Grant; Getachew A. Woldemariam; Sahba Kasiri; Subhrangsu S. Mandal

To understand the relationship between DNA damage potential and biochemical activities, we synthesized nine different Fe(III)-salen derivatives with varying substituents, and analyzed their in vitro DNA cleavage properties and biochemical effects on cultured human cells. Our results demonstrated that Fe(III)-salen complexes affect cell viability, induce nuclear fragmentation, and activate caspases and apoptosis in cultured human cells. The nature and the position of the substituents in the Fe(III)-salen complexes play critical roles in determining their apoptotic efficiencies. Most importantly, our results demonstrated that the in vitro DNA cleavage activities of Fe(III)-salen complexes are not essential for their apoptotic activities in human cells. Instead, the lesser their DNA cleavage activity the greater is their apoptotic efficiency.


Functional & Integrative Genomics | 2008

Components of the gene network associated with genotype-dependent response of wheat to the Fusarium mycotoxin deoxynivalenol

Stephanie Walter; J. M. Brennan; Chanemougasoundharam Arunachalam; Khairul I. Ansari; Xuejun Hu; Mojibur R. Khan; Friederike Trognitz; Bodo Trognitz; Gerald Leonard; Damian Egan; Fiona M. Doohan

The Fusarium mycotoxin deoxynivalenol (DON) facilitates fungal spread within wheat tissue and the development of Fusarium head blight disease. The ability of wheat spikelets to resist DON-induced bleaching is genotype-dependent. In wheat cultivar (cv.) CM82036 DON resistance is associated with a quantitative trait locus, Fhb1, located on the short arm of chromosome 3B. Gene expression profiling (microarray and real-time RT-PCR analyses) of DON-treated spikelets of progeny derived from a cross between cv. CM82036 and the DON-susceptible cv. Remus discriminated ten toxin-responsive transcripts associated with the inheritance of DON resistance and Fhb1. These genes do not exclusively map to Fhb1. Based on the putative function of the ten Fhb1-associated transcripts, we discuss how cascades involving classical metabolite biotransformation and sequestration processes, alleviation of oxidative stress and promotion of cell survival might contribute to the host response and defence against DON.


Journal of Molecular Biology | 2014

Histone methyltransferase EZH2 is transcriptionally induced by estradiol as well as estrogenic endocrine disruptors bisphenol-A and diethylstilbestrol.

Arunoday Bhan; Imran Hussain; Khairul I. Ansari; Samara A.M. Bobzean; Linda I. Perrotti; Subhrangsu S. Mandal

Enhancer of Zeste homolog 2 (EZH2), a methyltransferase specific to histone 3 lysine 27, is a critical player in gene silencing and is overexpressed in breast cancer. Our studies demonstrate that EZH2 is transcriptionally induced by estradiol in cultured breast cancer cells and in the mammary glands of ovariectomized rats. EZH2 promoter contains multiple functional estrogen-response elements. Estrogen receptors (ERs) and ER coregulators such as mixed lineage leukemia (MLL) histone methylases (MLL2 and MLL3) and histone acetyltransferase CBP/P300 bind to the EZH2 promoter in the presence of estradiol and regulate estradiol-induced EZH2 expression. EZH2 expression is also increased upon exposure to estrogenic endocrine disrupting chemicals (EDCs) such as bisphenol-A (BPA) and diethylstilbestrol (DES). Similar to estradiol, BPA and DES-induced EZH2 expression is coordinated by ERs, MLLs and CBP/P300. In summary, we demonstrate that EZH2 is transcriptionally regulated by estradiol in vitro and in vivo, and its expression is potentially dysregulated upon exposure to estrogenic EDCs.


FEBS Journal | 2009

Dynamic association of MLL1, H3K4 trimethylation with chromatin and Hox gene expression during the cell cycle

Bibhu P. Mishra; Khairul I. Ansari; Subhrangsu S. Mandal

Mixed lineage leukemias (MLLs) are histone H3 at lysine 4 (H3K4)‐specific methylases that play a critical role in regulating gene expression in humans. As chromatin condensation, relaxation and differential gene expression are keys to correct cell cycle progression, we analyzed the dynamic association of MLL and H3K4 trimethylation at different stages of the cell cycle. Interestingly, MLL1, which is normally associated with transcriptionally active chromatins (G1 phase), dissociates from condensed mitotic chromatin and returns at the end of telophase when the nucleus starts to relax. In contrast, H3K4 trimethylation mark, which is also normally associated with euchromatins (in G1), remains associated, even with condensed chromatin, throughout the cell cycle. The global levels of MLL1 and H3K4 trimethylation are not affected during the cell cycle, and H3Ser28 phosphorylation is only observed during mitosis. Interestingly, MLL target homeobox‐containing (Hox) genes (HoxA5, HoxA7 and HoxA10) are differentially expressed during the cell cycle, and the recruitment of MLL1 and H3K4 trimethylation levels are modulated in the promoter of these Hox genes as a function of their expression. In addition, down‐regulation of MLL1 results in cell cycle arrest at the G2/M phase. The fluctuation of H3K4 trimethylation marks at specific promoters, but not at the global level, indicates that H3K4 trimethylation marks that are present in the G1 phase may not be the same as the marks in other phases of the cell cycle; rather, old marks are removed and new marks are introduced. In conclusion, our studies demonstrate that MLL1 and H3K4 methylation have distinct dynamics during the cell cycle and play critical roles in the differential expression of Hox genes associated with cell cycle regulation.


Journal of Molecular Endocrinology | 2012

HOXC10 is overexpressed in breast cancer and transcriptionally regulated by estrogen via involvement of histone methylases MLL3 and MLL4

Khairul I. Ansari; Imran Hussain; Sahba Kasiri; Subhrangsu S. Mandal

HOXC10 is a critical player in the development of spinal cord, formation of neurons, and associated with human leukemia. We found that HOXC10 is overexpressed in breast cancer and transcriptionally regulated by estrogen (17β-estradiol, E(2)). The HOXC10 promoter contains several estrogen response elements (ERE1-7, half-sites). A luciferase-based reporter assay showed that ERE1 and ERE6 of HOXC10 promoter are E(2) responsive. ERα and ERβ play critical roles in E(2)-mediated activation of HOXC10. Knockdown of ERα and ERβ downregulated E(2)-induced HOXC10 expression. ERα and ERβ bind to ERE1 and ERE6 regions in an E(2)-dependent manner. Additionally, knockdown of histone methylases MLL3 and MLL4 (but not MLL1 and MLL2) diminished E(2)-induced expression of HOXC10. MLL3 and MLL4 were bound to the ERE1 and ERE6 regions of HOXC10 promoter in an E(2)-dependent manner. Overall, we demonstrated that HOXC10 is overexpressed in breast cancer, and it is an E(2)-responsive gene. Histone methylases MLL3 and MLL4, along with ERs, regulate HOXC10 gene expression in the presence of E(2).


Journal of Molecular Biology | 2011

HOXC6 Is Transcriptionally Regulated via Coordination of MLL Histone Methylase and Estrogen Receptor in an Estrogen Environment

Khairul I. Ansari; Imran Hussain; Bishakha Shrestha; Sahba Kasiri; Subhrangsu S. Mandal

Homeobox (HOX)-containing gene HOXC6 is a critical player in mammary gland development and milk production, and is overexpressed in breast and prostate cancers. We demonstrated that HOXC6 is transcriptionally regulated by estrogen (E2). HOXC6 promoter contains two putative estrogen response elements (EREs), termed as ERE1(1/2) and ERE2(1/2). Promoter analysis using luciferase-based reporter assay demonstrated that both EREs are responsive to E2, with ERE1(1/2) being more responsive than ERE2(1/2). Estrogen receptors (ERs) ERα and ERβ bind to these EREs in an E2-dependent manner, and antisense-mediated knockdown of ERs suppressed the E2-dependent activation of HOXC6 expression. Similarly, knockdown of histone methylases MLL2 and MLL3 decreased the E2-mediated activation of HOXC6. However, depletion of MLL1 or MLL4 showed no significant effect. MLL2 and MLL3 were bound to the HOXC6 EREs in an E2-dependent manner. In contrast, MLL1 and MLL4 that were bound to the HOXC6 promoter in the absence of E2 decreased upon exposure to E2. MLL2 and MLL3 play key roles in histone H3 lysine-4 trimethylation and in the recruitment of general transcription factors and RNA polymerase II in the HOXC6 promoter during E2-dependent transactivation. Nuclear receptor corepressors N-CoR and SAFB1 were bound in the HOXC6 promoter in the absence of E2, and that binding was decreased upon E2 treatment, indicating their critical roles in suppressing HOXC6 gene expression under nonactivated conditions. Knockdown of either ERα or ERβ abolished E2-dependent recruitment of MLL2 and MLL3 into the HOXC6 promoter, demonstrating key roles of ERs in the recruitment of these mixed lineage leukemias into the HOXC6 promoter. Overall, our studies demonstrated that HOXC6 is an E2-responsive gene, and that histone methylases MLL2 and MLL3, in coordination with ERα and ERβ, transcriptionally regulate HOXC6 in an E2-dependent manner.

Collaboration


Dive into the Khairul I. Ansari's collaboration.

Top Co-Authors

Avatar

Subhrangsu S. Mandal

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Imran Hussain

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Sahba Kasiri

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Arunoday Bhan

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Linda I. Perrotti

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Samara A.M. Bobzean

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Bibhu P. Mishra

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Bishakha Shrestha

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

James D. Grant

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Fiona M. Doohan

University College Dublin

View shared research outputs
Researchain Logo
Decentralizing Knowledge