Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Asa K. Rennermalm is active.

Publication


Featured researches published by Asa K. Rennermalm.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet

Laurence C. Smith; Vena W. Chu; Kang Yang; Colin J. Gleason; Lincoln H. Pitcher; Asa K. Rennermalm; Carl J. Legleiter; Alberto Behar; Brandon T. Overstreet; Samiah E Moustafa; Marco Tedesco; Richard R. Forster; Adam LeWinter; D. C. Finnegan; Yongwei Sheng; James Balog

Significance Meltwater runoff from the Greenland ice sheet is a key contributor to global sea level rise and is expected to increase in the future, but it has received little observational study. We used satellite and in situ technologies to assess surface drainage conditions on the southwestern ablation surface after an extreme 2012 melting event. We conclude that the ice sheet surface is efficiently drained under optimal conditions, that digital elevation models alone cannot fully describe supraglacial drainage and its connection to subglacial systems, and that predicting outflow from climate models alone, without recognition of subglacial processes, may overestimate true meltwater release from the ice sheet. Thermally incised meltwater channels that flow each summer across melt-prone surfaces of the Greenland ice sheet have received little direct study. We use high-resolution WorldView-1/2 satellite mapping and in situ measurements to characterize supraglacial water storage, drainage pattern, and discharge across 6,812 km2 of southwest Greenland in July 2012, after a record melt event. Efficient surface drainage was routed through 523 high-order stream/river channel networks, all of which terminated in moulins before reaching the ice edge. Low surface water storage (3.6 ± 0.9 cm), negligible impoundment by supraglacial lakes or topographic depressions, and high discharge to moulins (2.54–2.81 cm⋅d−1) indicate that the surface drainage system conveyed its own storage volume every <2 d to the bed. Moulin discharges mapped inside ∼52% of the source ice watershed for Isortoq, a major proglacial river, totaled ∼41–98% of observed proglacial discharge, highlighting the importance of supraglacial river drainage to true outflow from the ice edge. However, Isortoq discharges tended lower than runoff simulations from the Modèle Atmosphérique Régional (MAR) regional climate model (0.056–0.112 km3⋅d−1 vs. ∼0.103 km3⋅d−1), and when integrated over the melt season, totaled just 37–75% of MAR, suggesting nontrivial subglacial water storage even in this melt-prone region of the ice sheet. We conclude that (i) the interior surface of the ice sheet can be efficiently drained under optimal conditions, (ii) that digital elevation models alone cannot fully describe supraglacial drainage and its connection to subglacial systems, and (iii) that predicting outflow from climate models alone, without recognition of subglacial processes, may overestimate true meltwater export from the ice sheet to the ocean.


Journal of Glaciology | 2009

Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet

Vena W. Chu; Laurence C. Smith; Asa K. Rennermalm; Richard R. Forster; Jason E. Box; Niels Reeh

Increased mass losses from the Greenland ice sheet and inferred contributions to sea-level rise have heightened the need for hydrologic observations of meltwater exiting the ice sheet. We explore whether temporal variations in ice-sheet surface hydrology can be linked to the development of a downstream sediment plume in Kangerlussuaq Fjord by comparing: (1) plume area and suspended sediment concentration from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and field data; (2) ice-sheet melt extent from Special Sensor Microwave/Imager (SSM/I) passive microwave data; and (3) supraglacial lake drainage events from MODIS. Results confirm that the origin of the sediment plume is meltwater release from the ice sheet. Interannual variations in plume area reflect interannual variations in surface melting. Plumes appear almost immediately with seasonal surface-melt onset, provided the estuary is free of landfast sea ice. A seasonal hysteresis between melt extent and plume area suggests late-season exhaustion in sediment supply. Analysis of plume sensitivity to supraglacial events is less conclusive, with 69% of melt pulses and 38% of lake drainage events triggering an increase in plume area. We conclude that remote sensing of sediment plume behavior offers a novel tool for detecting the presence, timing and interannual variability of meltwater release from the ice sheet.


Environmental Research Letters | 2013

Understanding Greenland ice sheet hydrology using an integrated multi-scale approach

Asa K. Rennermalm; Samiah E Moustafa; J. R. Mioduszewski; Vivien W. S. Chu; Richard R. Forster; Birgit Hagedorn; Joel T. Harper; Thomas L. Mote; David A. Robinson; Christopher A. Shuman; Laurence C. Smith; Marco Tedesco

Improved understanding of Greenland ice sheet hydrology is critically important for assessing its impact on current and future ice sheet dynamics and global sea level rise. This has motivated the collection and integration of in situ observations, model development, and remote sensing efforts to quantify meltwater production, as well as its phase changes, transport, and export. Particularly urgent is a better understanding of albedo feedbacks leading to enhanced surface melt, potential positive feedbacks between ice sheet hydrology and dynamics, and meltwater retention in firn. These processes are not isolated, but must be understood as part of a continuum of processes within an integrated system. This letter describes a systems approach to the study of Greenland ice sheet hydrology, emphasizing component interconnections and feedbacks, and highlighting research and observational needs.


Environmental Research Letters | 2009

Does sea ice influence Greenland ice sheet surface-melt?

Asa K. Rennermalm; Laurence C. Smith; Julienne Stroeve; Vena W. Chu

Recent decreases in Arctic sea ice and increases in Greenland ice sheet surface-melt may have global impacts, but the interactions between these two processes are unknown. Using microwave satellite data, we explore the spatial and temporal covariance of sea ice extent and ice sheet surface-melt around Greenland from 1979 to 2007. Significant covariance is discovered in several loci in the late summer, with the strongest covariance in western Greenland, particularly in the southwest (Kangerlussuaq). In this region, wind direction patterns and a statistical lag analysis of ice retreat/advance and surface-melt event timings suggest that sea ice extent change is a potential driver of ice sheet melt. Here, late summer wind directions facilitate onshore advection of ocean heat, and enhanced melting on the ice sheet commonly occurs after reductions in offshore sea ice. Hence, this study identifies for the first time the covariability patterns of sea ice and ice sheet melt and suggests that a retreating sea ice margin may enhance melting over the ice sheet.


Journal of Hydrometeorology | 2005

The Water Budget of the Kuparuk River Basin, Alaska*

Stephen J. Déry; Marc Stieglitz; Asa K. Rennermalm; Eric F. Wood

A water budget study that considers precipitation, river runoff, evapotranspiration, and soil moisture for the Kuparuk River basin on the North Slope of Alaska is presented. Numerical simulations of hydrologic processes using the NASA Catchment-based Land Surface Model are conducted for the period 1991–2001 and provide the partitioning of the observed precipitation input (292 mm yr 1 ) onto the basin into river discharge (169 mm yr 1 ), evapotranspiration (127 mm yr 1 ), and an increase in soil moisture (1 mm yr 1 ). Discharge attains its annual peak during snowmelt and disposes 58% of the annual precipitation. Evapotranspiration contributes another 43% to the water budget and is mainly associated with warm summertime conditions and a snow-free surface. Combined, surface-snow and blowing-snow sublimation contribute only 5% of the total annual evaporative fluxes. Soil moisture recharge is associated with snowmelt during spring and rainfall during late summer and early fall, whereas soil drying accompanies high evapotranspiration rates during summer. An analysis of interannual variability in the water budget shows that warm, dry years favor a relatively more intense response of river discharge and evapotranspiration to the precipitation input, whereas cool, wet years tend to augment soil moisture.


Frontiers of Earth Science in China | 2017

Derivation of High Spatial Resolution Albedo from UAV Digital Imagery: Application over the Greenland Ice Sheet

Jonathan C. Ryan; Alun Hubbard; Jason E. Box; Stephen Brough; Karen A. Cameron; Joseph M. Cook; Matthew G. Cooper; Samuel Huckerby Doyle; Arwyn Edwards; Tom Holt; Tristram Irvine-Fynn; Christine Jones; Lincoln H. Pitcher; Asa K. Rennermalm; Laurence C. Smith; Marek Stibal; Neal Snooke

Measurements of albedo are a prerequisite for modelling surface melt across the Earths cryosphere, yet available satellite products are limited in spatial and/or temporal resolution. Here, we present a practical methodology to obtain centimetre resolution albedo products with accuracies of 5% using consumer-grade digital camera and unmanned aerial vehicle (UAV) technologies. Our method comprises a workflow for processing, correcting and calibrating raw digital images using a white reference target, and upward and downward shortwave radiation measurements from broadband silicon pyranometers. We demonstrate the method with a set of UAV sorties over the western, K-sector of the Greenland Ice Sheet. The resulting albedo product, UAV10A1, covers 280 km2, at a resolution of 20 cm per pixel and has a root-mean-square difference of 3.7% compared to MOD10A1 and 4.9% compared to ground-based broadband pyranometer measurements. By continuously measuring downward solar irradiance, the technique overcomes previous limitations due to variable illumination conditions during and between surveys over glaciated terrain. The current miniaturization of multispectral sensors and incorporation of upward facing radiation sensors on UAV packages means that this technique will likely become increasingly attractive in field studies and used in a wide range of applications for high temporal and spatial resolution surface mapping of debris, dust, cryoconite and bioalbedo and for directly constraining surface energy balance models.


Journal of Geophysical Research | 2016

Atmospheric drivers of Greenland surface melt revealed by self‐organizing maps

J. R. Mioduszewski; Asa K. Rennermalm; Arno Hammann; Marco Tedesco; E. U. Noble; Julienne Stroeve; Thomas L. Mote

Recent acceleration in surface melt on the Greenland ice sheet (GrIS) has occurred concurrently with a rapidly warming Arctic and has been connected to persistent, anomalous atmospheric circulation patterns over Greenland. To identify synoptic setups favoring enhanced GrIS surface melt and their decadal changes, we develop a summer Arctic synoptic climatology by employing self-organizing maps. These are applied to daily 500 hPa geopotential height fields obtained from the Modern Era Retrospective Analysis for Research and Applications reanalysis, 1979–2014. Particular circulation regimes are related to meteorological conditions and GrIS surface melt estimated with outputs from the Modele Atmospherique Regional. Our results demonstrate that the largest positive melt anomalies occur in concert with positive height anomalies near Greenland associated with wind, temperature, and humidity patterns indicative of strong meridional transport of heat and moisture. We find an increased frequency in a 500 hPa ridge over Greenland coinciding with a 63% increase in GrIS melt between the 1979–1988 and 2005–2014 periods, with 75.0% of surface melt changes attributed to thermodynamics, 17% to dynamics, and 8.0% to a combination. We also confirm that the 2007–2012 time period has the largest dynamic forcing relative of any period but also demonstrate that increased surface energy fluxes, temperature, and moisture separate from dynamic changes contributed more to melt even during this period. This implies that GrIS surface melt is likely to continue to increase in response to an ever warmer future Arctic, regardless of future atmospheric circulation patterns.


Giscience & Remote Sensing | 2016

Fluvial morphometry of supraglacial river networks on the southwest Greenland Ice Sheet

Kang Yang; Laurence C. Smith; Vena W. Chu; Lincoln H. Pitcher; Colin J. Gleason; Asa K. Rennermalm; Manchun Li

Extensive, complex supraglacial river networks form on the southwest Greenland ice sheet (GrIS) surface each melt season. These networks are the dominant pathways for surface meltwater transport on this part of the ice sheet, but their fluvial morphometry has received little study. This paper utilizes high-resolution (2 m) WorldView-1/2 images, digital elevation models, and GIS tools to present a detailed morphometric characterization (river number, river length, Strahler stream order, width, depth, bifurcation ratio, braiding index, drainage density, slope, and relief ratio) for 523 GrIS supraglacial river networks. A new algorithm is presented to determine Strahler stream order in supraglacial environments. Results show that (1) Supraglacial river networks are broadly similar to terrestrial landscapes in that they follow Horton’s laws (river number, mean river length, and slope versus stream order), widen downstream, and have comparable mean bifurcation ratios (3.7 ± 1.9) and braiding indices; (2) unlike terrestrial systems, supraglacial drainage densities (0.90–4.75 km/km2) have no correlation with elevation relief, but instead display a weakly inverse correlation with ice surface elevation; (3) both well-developed (e.g., fifth-order) and discrete (e.g., first-order) supraglacial river networks form on the ice sheet, with the latter associated with short flow distances upstream of a terminal moulin; (4) mean river flow widths increase substantially, but flow depths only modestly, with increasing stream order. Viewed collectively, the 523 supraglacial river networks studied here display fluvial morphometries both similar and dissimilar to terrestrial systems, with moulin capture an important physical process driving the latter.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Direct measurements of meltwater runoff on the Greenland ice sheet surface

Laurence C. Smith; Kang Yang; Lincoln H. Pitcher; Brandon T. Overstreet; Vena W. Chu; Asa K. Rennermalm; Jonathan C. Ryan; Matthew G. Cooper; Colin J. Gleason; Marco Tedesco; Jeyavinoth Jeyaratnam; Dirk van As; Michiel R. van den Broeke; Willem Jan van de Berg; Brice Noël; Peter L. Langen; Richard I. Cullather; Bin Zhao; Michael J. Willis; Alun Hubbard; Jason E. Box; Brittany A. Jenner; Alberto Behar

Significance Meltwater runoff is an important hydrological process operating on the Greenland ice sheet surface that is rarely studied directly. By combining satellite and drone remote sensing with continuous field measurements of discharge in a large supraglacial river, we obtained 72 h of runoff observations suitable for comparison with climate model predictions. The field observations quantify how a large, fluvial supraglacial catchment attenuates the magnitude and timing of runoff delivered to its terminal moulin and hence the bed. The data are used to calibrate classical fluvial hydrology equations to improve meltwater runoff models and to demonstrate that broad-scale surface water drainage patterns that form on the ice surface powerfully alter the timing, magnitude, and locations of meltwater penetrating into the ice sheet. Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland’s midelevation (1,207–1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems.


Journal of Climate | 2015

Controls on Spatial and Temporal Variability in Northern Hemisphere Terrestrial Snow Melt Timing, 1979–2012

J. R. Mioduszewski; Asa K. Rennermalm; David A. Robinson; L. Wang

AbstractSpring snowmelt onset has occurred earlier across much of the Northern Hemisphere land area in the last four decades. Understanding the mechanisms driving spring melt has remained a challenge, particularly in its spatial and temporal variability. Here, melt onset dates (MOD) obtained from passive microwave satellite data are used, as well as energy balance and meteorological fields from NASA’s Modern-Era Retrospective Analysis for Research and Applications, to assess trends in the MOD and attribute melt onset across much of Arctic and sub-Arctic Eurasia and North America during the spring snowmelt season from 1979 to 2012. Across much of the Northern Hemisphere MOD has occurred 1–2 weeks earlier over this period, with the strongest trends in western and central Russia and insignificant trends across most of North America. Trends in MOD are reflected by those in energy balance terms, with energy advection providing an increasing proportion of melt energy in regions with the strongest MOD trends. En...

Collaboration


Dive into the Asa K. Rennermalm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason E. Box

Geological Survey of Denmark and Greenland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vena W. Chu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge