Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ascia Eskin is active.

Publication


Featured researches published by Ascia Eskin.


Clinical Cancer Research | 2011

Gene Expression Profile Correlates with T-Cell Infiltration and Relative Survival in Glioblastoma Patients Vaccinated with Dendritic Cell Immunotherapy

Robert M. Prins; Horacio Soto; Veerauo Konkankit; Sylvia K. Odesa; Ascia Eskin; William H. Yong; Stanley F. Nelson; Linda M. Liau

Purpose: To assess the feasibility, safety, and toxicity of autologous tumor lysate–pulsed dendritic cell (DC) vaccination and toll-like receptor (TLR) agonists in patients with newly diagnosed and recurrent glioblastoma. Clinical and immune responses were monitored and correlated with tumor gene expression profiles. Experimental Design: Twenty-three patients with glioblastoma (WHO grade IV) were enrolled in this dose-escalation study and received three biweekly injections of glioma lysate-pulsed DCs followed by booster vaccinations with either imiquimod or poly-ICLC adjuvant every 3 months until tumor progression. Gene expression profiling, immunohistochemistry, FACS, and cytokine bead arrays were performed on patient tumors and peripheral blood mononuclear cells. Results: DC vaccinations are safe and not associated with any dose-limiting toxicity. The median overall survival from the time of initial surgical diagnosis of glioblastoma was 31.4 months, with a 1-, 2-, and 3-year survival rate of 91%, 55%, and 47%, respectively. Patients whose tumors had mesenchymal gene expression signatures exhibited increased survival following DC vaccination compared with historic controls of the same genetic subtype. Tumor samples with a mesenchymal gene expression signature had a higher number of CD3+ and CD8+ tumor-infiltrating lymphocytes compared with glioblastomas of other gene expression signatures (P = 0.006). Conclusion: Autologous tumor lysate–pulsed DC vaccination in conjunction with TLR agonists is safe as adjuvant therapy in newly diagnosed and recurrent glioblastoma patients. Our results suggest that the mesenchymal gene expression profile may identify an immunogenic subgroup of glioblastoma that may be more responsive to immune-based therapies. Clin Cancer Res; 17(6); 1603–15. ©2010 AACR.


PLOS Genetics | 2010

U87MG Decoded: The Genomic Sequence of a Cytogenetically Aberrant Human Cancer Cell Line

Michael J. Clark; Nils Homer; Brian D. O'Connor; Zugen Chen; Ascia Eskin; Hane Lee; Barry Merriman; Stanley F. Nelson

U87MG is a commonly studied grade IV glioma cell line that has been analyzed in at least 1,700 publications over four decades. In order to comprehensively characterize the genome of this cell line and to serve as a model of broad cancer genome sequencing, we have generated greater than 30x genomic sequence coverage using a novel 50-base mate paired strategy with a 1.4kb mean insert library. A total of 1,014,984,286 mate-end and 120,691,623 single-end two-base encoded reads were generated from five slides. All data were aligned using a custom designed tool called BFAST, allowing optimal color space read alignment and accurate identification of DNA variants. The aligned sequence reads and mate-pair information identified 35 interchromosomal translocation events, 1,315 structural variations (>100 bp), 191,743 small (<21 bp) insertions and deletions (indels), and 2,384,470 single nucleotide variations (SNVs). Among these observations, the known homozygous mutation in PTEN was robustly identified, and genes involved in cell adhesion were overrepresented in the mutated gene list. Data were compared to 219,187 heterozygous single nucleotide polymorphisms assayed by Illumina 1M Duo genotyping array to assess accuracy: 93.83% of all SNPs were reliably detected at filtering thresholds that yield greater than 99.99% sequence accuracy. Protein coding sequences were disrupted predominantly in this cancer cell line due to small indels, large deletions, and translocations. In total, 512 genes were homozygously mutated, including 154 by SNVs, 178 by small indels, 145 by large microdeletions, and 35 by interchromosomal translocations to reveal a highly mutated cell line genome. Of the small homozygously mutated variants, 8 SNVs and 99 indels were novel events not present in dbSNP. These data demonstrate that routine generation of broad cancer genome sequence is possible outside of genome centers. The sequence analysis of U87MG provides an unparalleled level of mutational resolution compared to any cell line to date.


Science | 2014

Targeted Therapy Resistance Mediated by Dynamic Regulation of Extrachromosomal Mutant EGFR DNA

David Nathanson; Beatrice Gini; Jack Mottahedeh; Koppany Visnyei; Tomoyuki Koga; German Gomez; Ascia Eskin; Kiwook Hwang; Jun Wang; Kenta Masui; Andres A. Paucar; Huijun Yang; Minori Ohashi; Shaojun Zhu; Jill Wykosky; Rachel Reed; Stanley F. Nelson; Timothy F. Cloughesy; C. David James; P. Nagesh Rao; Harley I. Kornblum; James R. Heath; Webster K. Cavenee; Frank B. Furnari; Paul S. Mischel

Playing Hide and Seek Targeted cancer therapies have shown promising results in patients, but few of these drugs provide long-term benefits because tumor cells rapidly develop drug resistance. Nathanson et al. (p. 72, published online 5 December) show that glioblastoma cells can become resistant to erlotinib, an epidermal growth factor receptor (EGFR)–targeted drug, by eliminating extrachromosomal copies of the mutant EGFR gene. After a period of drug withdrawal, the mutant EGFR gene reappears on extrachromosomal DNA and the tumor cells become resensitized. The discovery that cancer cells can evade drug therapy by this “hide and seek” mechanism may help to optimize the dosing schedule of erlotinib in glioblastoma patients. Tumor cells become resistant to targeted therapies by eliminating the gene encoding the drug target from extrachromosomal DNA. Intratumoral heterogeneity contributes to cancer drug resistance, but the underlying mechanisms are not understood. Single-cell analyses of patient-derived models and clinical samples from glioblastoma patients treated with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) demonstrate that tumor cells reversibly up-regulate or suppress mutant EGFR expression, conferring distinct cellular phenotypes to reach an optimal equilibrium for growth. Resistance to EGFR TKIs is shown to occur by elimination of mutant EGFR from extrachromosomal DNA. After drug withdrawal, reemergence of clonal EGFR mutations on extrachromosomal DNA follows. These results indicate a highly specific, dynamic, and adaptive route by which cancers can evade therapies that target oncogenes maintained on extrachromosomal DNA.


Journal of Neuroinflammation | 2010

IL-17A is increased in the serum and in spinal cord CD8 and mast cells of ALS patients

Milan Fiala; Madhuri Chattopadhay; Antonio La Cava; Eric Tse; Guanghao Liu; Elaine V. Lourenço; Ascia Eskin; Philip T. Liu; Larry Magpantay; Stephen Tse; Michelle Mahanian; Rachel Weitzman; Jason Tong; Caroline Nguyen; Tiffany Cho; Patrick Koo; James Sayre; Otoniel Martínez-Maza; Mark J. Rosenthal; Martina Wiedau-Pazos

The contribution of inflammation to neurodegenerative diseases is increasingly recognized, but the role of inflammation in sporadic amyotrophic lateral sclerosis (sALS) is not well understood and no animal model is available. We used enzyme-linked immunosorbent assays (ELISAs) to measure the cytokine interleukin-17A (IL-17A) in the serum of ALS patients (n = 32; 28 sporadic ALS (sALS) and 4 familial ALS (fALS)) and control subjects (n = 14; 10 healthy subjects and 4 with autoimmune disorders). IL-17A serum concentrations were 5767 ± 2700 pg/ml (mean ± SEM) in sALS patients and 937 ± 927 pg/ml in fALS patients in comparison to 7 ± 2 pg/ml in control subjects without autoimmune disorders (p = 0.008 ALS patients vs. control subjects by Mann-Whitney test). Sixty-four percent of patients and no control subjects had IL-17A serum concentrations > 50 pg/ml (p = 0.003 ALS patients vs. healthy subjects by Fishers exact test). The spinal cords of sALS (n = 8), but not control subjects (n = 4), were infiltrated by interleukin-1β- (IL-1β-), and tumor necrosis factor-α-positive macrophages (co-localizing with neurons), IL-17A-positive CD8 cells, and IL-17A-positive mast cells. Mononuclear cells treated with aggregated forms of wild type superoxide dismutase-1 (SOD-1) showed induction of the cytokines IL-1β, interleukin-6 (IL-6), and interleukin-23 (IL-23) that may be responsible for induction of IL-17A. In a microarray analysis of 28,869 genes, stimulation of peripheral blood mononuclear cells by mutant superoxide dismutase-1 induced four-fold higher transcripts of interleukin-1α (IL-1α), IL-6, CCL20, matrix metallopeptidase 1, and tissue factor pathway inhibitor 2 in mononuclear cells of patients as compared to controls, whereas the anti-inflammatory cytokine interleukin-10 (IL-10) was increased in mononuclear cells of control subjects. Aggregated wild type SOD-1 in sALS neurons could induce in mononuclear cells the cytokines inducing chronic inflammation in sALS spinal cord, in particular IL-6 and IL-17A, damaging neurons. Immune modulation of chronic inflammation may be a new approach to sALS.


Cell Metabolism | 2013

EGFR Mutation-Induced Alternative Splicing of Max Contributes to Growth of Glycolytic Tumors in Brain Cancer

Ivan Babic; Erik S. Anderson; Kazuhiro Tanaka; Deliang Guo; Kenta Masui; Bing Li; Shaojun Zhu; Yuchao Gu; Genaro R. Villa; David Akhavan; David Nathanson; Beatrice Gini; Sergey Mareninov; Rui Li; Carolina Espindola Camacho; Siavash K. Kurdistani; Ascia Eskin; Stanley F. Nelson; William H. Yong; Webster K. Cavenee; Timothy F. Cloughesy; Heather R. Christofk; Douglas L. Black; Paul S. Mischel

Alternative splicing contributes to diverse aspects of cancer pathogenesis including altered cellular metabolism, but the specificity of the process or its consequences are not well understood. We characterized genome-wide alternative splicing induced by the activating EGFRvIII mutation in glioblastoma (GBM). EGFRvIII upregulates the heterogeneous nuclear ribonucleoprotein (hnRNP) A1 splicing factor, promoting glycolytic gene expression and conferring significantly shorter survival in patients. HnRNPA1 promotes splicing of a transcript encoding the Myc-interacting partner Max, generating Delta Max, an enhancer of Myc-dependent transformation. Delta Max, but not full-length Max, rescues Myc-dependent glycolytic gene expression upon induced EGFRvIII loss, and correlates with hnRNPA1 expression and downstream Myc-dependent gene transcription in patients. Finally, Delta Max is shown to promote glioma cell proliferation in vitro and augment EGFRvIII expressing GBM growth in vivo. These results demonstrate an important role for alternative splicing in GBM and identify Delta Max as a mediator of Myc-dependent tumor cell metabolism.


The Journal of Clinical Endocrinology and Metabolism | 2015

Exome Sequencing for the Diagnosis of 46,XY Disorders of Sex Development

Ruth Baxter; Valerie A. Arboleda; Hane Lee; Hayk Barseghyan; Adam Mp; Patricia Y Fechner; Renee Bargman; Catherine E. Keegan; Sharon Travers; Susan Schelley; Louanne Hudgins; Revi P. Mathew; Heather J. Stalker; Roberto T. Zori; Ora Gordon; Leigh Ramos-Platt; Anna Pawlikowska-Haddal; Ascia Eskin; Stanley F. Nelson; Emmanuèle Délot; Eric Vilain

CONTEXT Disorders of sex development (DSD) are clinical conditions where there is a discrepancy between the chromosomal sex and the phenotypic (gonadal or genital) sex of an individual. Such conditions can be stressful for patients and their families and have historically been difficult to diagnose, especially at the genetic level. In particular, for cases of 46,XY gonadal dysgenesis, once variants in SRY and NR5A1 have been ruled out, there are few other single gene tests available. OBJECTIVE We used exome sequencing followed by analysis with a list of all known human DSD-associated genes to investigate the underlying genetic etiology of 46,XY DSD patients who had not previously received a genetic diagnosis. DESIGN Samples were either submitted to the research laboratory or submitted as clinical samples to the UCLA Clinical Genomic Center. Sequencing data were filtered using a list of genes known to be involved in DSD. RESULTS We were able to identify a likely genetic diagnosis in more than a third of cases, including 22.5% with a pathogenic finding, an additional 12.5% with likely pathogenic findings, and 15% with variants of unknown clinical significance. CONCLUSIONS Early identification of the genetic cause of a DSD will in many cases streamline and direct the clinical management of the patient, with more focused endocrine and imaging studies and better-informed surgical decisions. Exome sequencing proved an efficient method toward such a goal in 46,XY DSD patients.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Annexin A6 modifies muscular dystrophy by mediating sarcolemmal repair

Kayleigh A. Swaggart; Alexis R. Demonbreun; Andy H. Vo; Kaitlin E. Swanson; Ellis Y. Kim; John P. Fahrenbach; Jenan Holley-Cuthrell; Ascia Eskin; Zugen Chen; Kevin Squire; Ahlke Heydemann; Abraham A. Palmer; Stanley F. Nelson; Elizabeth M. McNally

Significance Many forms of muscular dystrophy produce muscle weakness through injury to skeletal muscle myofibers and specifically disruption of the muscle plasma membrane. Using a mouse model of muscular dystrophy in a genetically diverse background, a genome-wide scan for genetic modifiers was undertaken. A modifier locus that altered plasma membrane leak was interrogated, and a splice site variant in Anxa6, encoding annexin A6, was identified. The Anxa6 splice site produces a truncated annexin A6 protein. The truncated annexin A6 protein was found to inhibit membrane repair by disrupting the formation of the normal annexin A6-rich cap and repair zone. These data demonstrate annexin A6s role in muscle membrane leak and repair in muscular dystrophy. Many monogenic disorders, including the muscular dystrophies, display phenotypic variability despite the same disease-causing mutation. To identify genetic modifiers of muscular dystrophy and its associated cardiomyopathy, we used quantitative trait locus mapping and whole genome sequencing in a mouse model. This approach uncovered a modifier locus on chromosome 11 associated with sarcolemmal membrane damage and heart mass. Whole genome and RNA sequencing identified Anxa6, encoding annexin A6, as a modifier gene. A synonymous variant in exon 11 creates a cryptic splice donor, resulting in a truncated annexin A6 protein called ANXA6N32. Live cell imaging showed that annexin A6 orchestrates a repair zone and cap at the site of membrane disruption. In contrast, ANXA6N32 dramatically disrupted the annexin A6-rich cap and the associated repair zone, permitting membrane leak. Anxa6 is a modifier of muscular dystrophy and membrane repair after injury.


Nature | 2016

Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis

Tamer Sallam; Marius Jones; Thomas Gilliland; Li Zhang; Xiaohui Wu; Ascia Eskin; Jaspreet Sandhu; David Casero; Thomas Q. de Aguiar Vallim; Cynthia Hong; Melanie Katz; Richard E. Lee; Julian P. Whitelegge; Peter Tontonoz

The liver X receptors (LXRs) are transcriptional regulators of cellular and systemic cholesterol homeostasis. In the setting of cholesterol excess, LXR activation induces the expression of a battery of genes involved in cholesterol efflux 1, facilities cholesterol esterification by promoting fatty acid synthesis 2, and inhibits cholesterol uptake by the low-density lipoprotein receptor (LDLR)3. The fact that sterol content is maintained in a narrow range in most cell types and in the organism as a whole suggests that extensive crosstalk between regulatory pathways must exist. However, the molecular mechanisms that integrate LXRs with other lipid metabolic pathways, are incompletely understood. Here we show that ligand activation of LXRs in liver not only promotes cholesterol efflux, but also simultaneously inhibits cholesterol biosynthesis. We further identify the long non-coding RNA LeXis as one mediator of this effect. Hepatic LeXis expression is robustly induced in response to western diet feeding or pharmacologic LXR activation. Raising or lowering the levels of LeXis in liver affects the expression of cholesterol biosynthetic genes, and the levels of cholesterol in the liver and plasma. LeXis interacts with and affects the DNA interactions of Raly, a heterogeneous ribonucleoprotein that is required for the maximal expression of cholesterologenic genes in mouse liver. These studies outline a regulatory role for a non-coding RNA in lipid metabolism and advance our understanding of the mechanisms orchestrating sterol homeostasis.


Neuro-oncology | 2013

Identifying the mesenchymal molecular subtype of glioblastoma using quantitative volumetric analysis of anatomic magnetic resonance images

Kourosh M. Naeini; Whitney B. Pope; Timothy F. Cloughesy; Robert J. Harris; Albert Lai; Ascia Eskin; Reshmi Chowdhury; Heidi S. Phillips; Phioanh L. Nghiemphu; Yalda Behbahanian; Benjamin M. Ellingson

BACKGROUND Subtypes of glioblastoma multiforme (GBM) based on genetic and molecular alterations are thought to cause alterations in anatomic MRI owing to downstream biological changes, such as edema production, blood-brain barrier breakdown, and necrosis. The purpose of the current study was to identify a potential relationship between imaging features and the mesenchymal (MES) GBM subtype, which has the worst patient prognosis. METHODS MRIs from 46 patients with histologically confirmed GBM were retrospectively analyzed. The volume of contrast enhancement, regions of central necrosis, and hyperintensity of T2/fluid attenuated inversion recovery (FLAIR) were measured. Additionally, the ratio of T2/FLAIR hyperintense volume to the volume of contrast enhancement and necrosis was calculated. RESULTS The volume of contrast enhancement, volume of central necrosis, combined volume of contrast enhancement and central necrosis, and the ratio of T2/FLAIR to contrast enhancement and necrosis were significantly different in MES compared with non-MES GBM (Mann-Whitney, P < .05). Receiver-operator characteristics indicated that these 4 metrics were all significant predictors of the MES phenotype. The volume ratio of T2 hyperintensity to contrast enhancement and central necrosis was significantly lower in MES vs non-MES GBM (P < .0001), was a significant predictor of the MES phenotype (area under the curve = 0.93, P < .001), and could be used to stratify short- and long-term overall survival (log-rank, P = .0064 using cutoff of 3.0). These trends were also present when excluding isocitrate dehydrogenase 1 mutant tumors and incorporating covariates such as age and KPS score. CONCLUSIONS Results suggest that volume ratio may be a simple, cost-effective, and noninvasive biomarker for quickly identifying MES GBM.


Molecular Cancer Research | 2011

Autocrine Endothelin-3/Endothelin Receptor B Signaling Maintains Cellular and Molecular Properties of Glioblastoma Stem Cells

Yue Liu; Fei Ye; Kazunari Yamada; Jonathan L. Tso; Yibei Zhang; David Nguyen; Qinghua Dong; Horacio Soto; Jinny Choe; Anna Dembo; Hayley Wheeler; Ascia Eskin; Ingrid Schmid; William H. Yong; Paul S. Mischel; Timothy F. Cloughesy; Harley I. Kornblum; Stanley F. Nelson; Linda M. Liau; Cho-Lea Tso

Glioblastoma stem cells (GSC) express both radial glial cell and neural crest cell (NCC)-associated genes. We report that endothelin 3 (EDN3), an essential mitogen for NCC development and migration, is highly produced by GSCs. Serum-induced proliferative differentiation rapidly decreased EDN3 production and downregulated the expression of stemness-associated genes, and reciprocally, two glioblastoma markers, EDN1 and YKL-40 transcripts, were induced. Correspondingly, patient glioblastoma tissues express low levels of EDN3 mRNA and high levels of EDN1 and YKL-40 mRNA. Blocking EDN3/EDN receptor B (EDNRB) signaling by an EDNRB antagonist (BQ788), or EDN3 RNA interference (siRNA), leads to cell apoptosis and functional impairment of tumor sphere formation and cell spreading/migration in culture and loss of tumorigenic capacity in animals. Using exogenous EDN3 as the sole mitogen in culture does not support GSC propagation, but it can rescue GSCs from undergoing cell apoptosis. Molecular analysis by gene expression profiling revealed that most genes downregulated by EDN3/EDNRB blockade were those involved in cytoskeleton organization, pause of growth and differentiation, and DNA damage response, implicating the involvement of EDN3/EDNRB signaling in maintaining GSC migration, undifferentiation, and survival. These data suggest that autocrine EDN3/EDNRB signaling is essential for maintaining GSCs. Incorporating END3/EDNRB-targeted therapies into conventional cancer treatments may have clinical implication for the prevention of tumor recurrence. Mol Cancer Res; 9(12); 1668–85. ©2011 AACR.

Collaboration


Dive into the Ascia Eskin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hane Lee

University of California

View shared research outputs
Top Co-Authors

Avatar

Linda M. Liau

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Vilain

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zugen Chen

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge