Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hayk Barseghyan is active.

Publication


Featured researches published by Hayk Barseghyan.


The Journal of Clinical Endocrinology and Metabolism | 2015

Exome Sequencing for the Diagnosis of 46,XY Disorders of Sex Development

Ruth Baxter; Valerie A. Arboleda; Hane Lee; Hayk Barseghyan; Adam Mp; Patricia Y Fechner; Renee Bargman; Catherine E. Keegan; Sharon Travers; Susan Schelley; Louanne Hudgins; Revi P. Mathew; Heather J. Stalker; Roberto T. Zori; Ora Gordon; Leigh Ramos-Platt; Anna Pawlikowska-Haddal; Ascia Eskin; Stanley F. Nelson; Emmanuèle Délot; Eric Vilain

CONTEXT Disorders of sex development (DSD) are clinical conditions where there is a discrepancy between the chromosomal sex and the phenotypic (gonadal or genital) sex of an individual. Such conditions can be stressful for patients and their families and have historically been difficult to diagnose, especially at the genetic level. In particular, for cases of 46,XY gonadal dysgenesis, once variants in SRY and NR5A1 have been ruled out, there are few other single gene tests available. OBJECTIVE We used exome sequencing followed by analysis with a list of all known human DSD-associated genes to investigate the underlying genetic etiology of 46,XY DSD patients who had not previously received a genetic diagnosis. DESIGN Samples were either submitted to the research laboratory or submitted as clinical samples to the UCLA Clinical Genomic Center. Sequencing data were filtered using a list of genes known to be involved in DSD. RESULTS We were able to identify a likely genetic diagnosis in more than a third of cases, including 22.5% with a pathogenic finding, an additional 12.5% with likely pathogenic findings, and 15% with variants of unknown clinical significance. CONCLUSIONS Early identification of the genetic cause of a DSD will in many cases streamline and direct the clinical management of the patient, with more focused endocrine and imaging studies and better-informed surgical decisions. Exome sequencing proved an efficient method toward such a goal in 46,XY DSD patients.


Human Molecular Genetics | 2016

A recurrent p.Arg92Trp variant in steroidogenic factor-1 (NR5A1) can act as a molecular switch in human sex development

Anu Bashamboo; Patricia A. Donohoue; Eric Vilain; Sandra Rojo; Pierre Calvel; Sumudu Nimali Seneviratne; Federica Buonocore; Hayk Barseghyan; Nathan C. Bingham; Jill A. Rosenfeld; Surya N. Mulukutla; Mahim Jain; Lindsay C. Burrage; Shweta U. Dhar; Ashok Balasubramanyam; Brendan Lee; Marie-Charlotte Dumargne; Caroline Eozenou; Jenifer Suntharalingham; Ksh de Silva; Lin Lin; Joelle Bignon-Topalovic; Francis Poulat; Carlos F. Lagos; Ken McElreavey; John C. Achermann

Cell lineages of the early human gonad commit to one of the two mutually antagonistic organogenetic fates, the testis or the ovary. Some individuals with a 46,XX karyotype develop testes or ovotestes (testicular or ovotesticular disorder of sex development; TDSD/OTDSD), due to the presence of the testis-determining gene, SRY. Other rare complex syndromic forms of TDSD/OTDSD are associated with mutations in pro-ovarian genes that repress testis development (e.g. WNT4); however, the genetic cause of the more common non-syndromic forms is unknown. Steroidogenic factor-1 (known as NR5A1) is a key regulator of reproductive development and function. Loss-of-function changes in NR5A1 in 46,XY individuals are associated with a spectrum of phenotypes in humans ranging from a lack of testis formation to male infertility. Mutations in NR5A1 in 46,XX women are associated with primary ovarian insufficiency, which includes a lack of ovary formation, primary and secondary amenorrhoea as well as early menopause. Here, we show that a specific recurrent heterozygous missense mutation (p.Arg92Trp) in the accessory DNA-binding region of NR5A1 is associated with variable degree of testis development in 46,XX children and adults from four unrelated families. Remarkably, in one family a sibling raised as a girl and carrying this NR5A1 mutation was found to have a 46,XY karyotype with partial testicular dysgenesis. These unique findings highlight how a specific variant in a developmental transcription factor can switch organ fate from the ovary to testis in mammals and represents the first missense mutation causing isolated, non-syndromic 46,XX testicular/ovotesticular DSD in humans.


Biology of Sex Differences | 2013

The Sex Chromosome Trisomy mouse model of XXY and XYY: metabolism and motor performance

Xuqi Chen; Shayna M. Williams-Burris; Rebecca McClusky; Tuck C. Ngun; Negar Ghahramani; Hayk Barseghyan; Karen Reue; Eric Vilain; Arthur P. Arnold

BackgroundKlinefelter syndrome (KS), caused by XXY karyotype, is characterized by low testosterone, infertility, cognitive deficits, and increased prevalence of health problems including obesity and diabetes. It has been difficult to separate direct genetic effects from hormonal effects in human studies or in mouse models of KS because low testosterone levels are confounded with sex chromosome complement.MethodsIn this study, we present the Sex Chromosome Trisomy (SCT) mouse model that produces XXY, XYY, XY, and XX mice in the same litters, each genotype with either testes or ovaries. The independence of sex chromosome complement and gonadal type allows for improved recognition of sex chromosome effects that are not dependent on levels of gonadal hormones. All mice were gonadectomized and treated with testosterone for 3 weeks. Body weight, body composition, and motor function were measured.ResultsBefore hormonal manipulation, XXY mice of both sexes had significantly greater body weight and relative fat mass compared to XY mice. After gonadectomy and testosterone replacement, XXY mice (both sexes) still had significantly greater body weight and relative fat mass, but less relative lean mass compared to XY mice. Liver, gonadal fat pad, and inguinal fat pad weights were also higher in XXY mice, independent of gonadal sex. In several of these measures, XX mice also differed from XY mice, and gonadal males and females differed significantly on almost every metabolic measure. The sex chromosome effects (except for testis size) were also seen in gonadally female mice before and after ovariectomy and testosterone treatment, indicating that they do not reflect group differences in levels of testicular secretions. XYY mice were similar to XY mice on body weight and metabolic variables but performed worse on motor tasks compared to other groups.ConclusionsWe find that the new SCT mouse model for XXY and XYY recapitulates features found in humans with these aneuploidies. We illustrate that this model has significant promise for unveiling the role of genetic effects compared to hormonal effects in these syndromes, because many phenotypes are different in XXY vs. XY gonadal female mice which have never been exposed to testicular secretions.


Archives of Sexual Behavior | 2014

Feminized Behavior and Brain Gene Expression in a Novel Mouse Model of Klinefelter Syndrome

Tuck C. Ngun; Negar Ghahramani; Michelle M. Creek; Shayna M. Williams-Burris; Hayk Barseghyan; Yuichiro Itoh; Francisco J. Sánchez; Rebecca McClusky; Janet S Sinsheimer; Arthur P. Arnold; Eric Vilain

Klinefelter Syndrome (KS) is the most common sex chromosome aneuploidy in men and is characterized by the presence of an additional X chromosome (XXY). In some Klinefelter males, certain traits may be feminized or shifted from the male-typical pattern towards a more female-typical one. Among them might be partner choice, one of the most sexually dimorphic traits in the animal kingdom. We investigated the extent of feminization in XXY male mice (XXYM) in partner preference and gene expression in the bed nucleus of the stria terminalis/preoptic area and the striatum in mice from the Sex Chromosome Trisomy model. We tested for partner preference using a three-chambered apparatus in which the test mouse was free to choose between stimulus animals of either sex. We found that partner preference in XXYM was feminized. These differences were likely due to interactions of the additional X chromosome with the Y. We also discovered genes that differed in expression in XXYM versus XYM. Some of these genes are feminized in their expression pattern. Lastly, we also identified genes that differed only between XXYM versus XYM and not XXM versus XYM. Genes that are both feminized and unique to XXYM versus XYM represent strong candidates for dissecting the molecular pathways responsible for phenotypes present in KS/XXYM but not XXM. In sum, our results demonstrated that investigating behavioral and molecular feminization in XXY males can provide crucial information about the pathophysiology of KS and may aid our understanding of sex differences in brain and behavior.


Scientific Reports | 2016

Sex-Specific Effects of Testosterone on the Sexually Dimorphic Transcriptome and Epigenome of Embryonic Neural Stem/Progenitor Cells

Matthew S. Bramble; Lara Roach; Allen Lipson; Neerja Vashist; Ascia Eskin; Tuck C. Ngun; Jason E. Gosschalk; Steven Klein; Hayk Barseghyan; Valerie A. Arboleda; Eric Vilain

The mechanisms by which sex differences in the mammalian brain arise are poorly understood, but are influenced by a combination of underlying genetic differences and gonadal hormone exposure. Using a mouse embryonic neural stem cell (eNSC) model to understand early events contributing to sexually dimorphic brain development, we identified novel interactions between chromosomal sex and hormonal exposure that are instrumental to early brain sex differences. RNA-sequencing identified 103 transcripts that were differentially expressed between XX and XY eNSCs at baseline (FDR = 0.10). Treatment with testosterone-propionate (TP) reveals sex-specific gene expression changes, causing 2854 and 792 transcripts to become differentially expressed on XX and XY genetic backgrounds respectively. Within the TP responsive transcripts, there was enrichment for genes which function as epigenetic regulators that affect both histone modifications and DNA methylation patterning. We observed that TP caused a global decrease in 5-methylcytosine abundance in both sexes, a transmissible effect that was maintained in cellular progeny. Additionally, we determined that TP was associated with residue-specific alterations in acetylation of histone tails. These findings highlight an unknown component of androgen action on cells within the developmental CNS, and contribute to a novel mechanism of action by which early hormonal organization is initiated and maintained.


Genetics | 2014

Regulation of Sex Determination in Mice by a Non-coding Genomic Region

Valerie A. Arboleda; Alice Fleming; Hayk Barseghyan; Emmanuèle Délot; Janet S Sinsheimer; Eric Vilain

To identify novel genomic regions that regulate sex determination, we utilized the powerful C57BL/6J-YPOS (B6-YPOS) model of XY sex reversal where mice with autosomes from the B6 strain and a Y chromosome from a wild-derived strain, Mus domesticus poschiavinus (YPOS), show complete sex reversal. In B6-YPOS, the presence of a 55-Mb congenic region on chromosome 11 protects from sex reversal in a dose-dependent manner. Using mouse genetic backcross designs and high-density SNP arrays, we narrowed the congenic region to a 1.62-Mb genomic region on chromosome 11 that confers 80% protection from B6-YPOS sex reversal when one copy is present and complete protection when two copies are present. It was previously believed that the protective congenic region originated from the 129S1/SviMJ (129) strain. However, genomic analysis revealed that this region is not derived from 129 and most likely is derived from the semi-inbred strain POSA. We show that the small 1.62-Mb congenic region that protects against B6-YPOS sex reversal is located within the Sox9 promoter and promotes the expression of Sox9, thereby driving testis development within the B6-YPOS background. Through 30 years of backcrossing, this congenic region was maintained, as it promoted male sex determination and fertility despite the female-promoting B6-YPOS genetic background. Our findings demonstrate that long-range enhancer regions are critical to developmental processes and can be used to identify the complex interplay between genome variants, epigenetics, and developmental gene regulation.


Biology of Sex Differences | 2018

Identification of novel candidate genes for 46,XY disorders of sex development (DSD) using a C57BL/6J-Y POS mouse model

Hayk Barseghyan; Aleisha Symon; Mariam Zadikyan; Miguel Almalvez; Eva Segura; Ascia Eskin; Matthew S. Bramble; Valerie A. Arboleda; Ruth Baxter; Stanley F. Nelson; Emmanuèle Délot; Vincent R. Harley; Eric Vilain

BackgroundDisorders of sex development (DSD) have an estimated frequency of 0.5% of live births encompassing a variety of urogenital anomalies ranging from mild hypospadias to a discrepancy between sex chromosomes and external genitalia. In order to identify the underlying genetic etiology, we had performed exome sequencing in a subset of DSD cases with 46,XY karyotype and were able to identify the causative genetic variant in 35% of cases. While the genetic etiology was not ascertained in more than half of the cases, a large number of variants of unknown clinical significance (VUS) were identified in those exomes.MethodsTo investigate the relevance of these VUS in regards to the patient’s phenotype, we utilized a mouse model in which the presence of a Y chromosome from the poschiavinus strain (YPOS) on a C57BL/6J (B6) background results in XY undervirilization and sex reversal, a phenotype characteristic to a large subset of human 46,XY DSD cases. We assessed gene expression differences between B6-YB6 and undervirilized B6-YPOS gonads at E11.5 and identified 515 differentially expressed genes (308 underexpressed and 207 overexpressed in B6-YPOS males).ResultsWe identified 15 novel candidate genes potentially involved in 46,XY DSD pathogenesis by filtering the list of human VUS-carrying genes provided by exome sequencing with the list of differentially expressed genes from B6-YPOS mouse model. Additionally, we identified that 7 of the 15 candidate genes were significantly underexpressed in the XY gonads of mice with suppressed Sox9 expression in Sertoli cells suggesting that some of the candidate genes may be downstream of a well-known sex determining gene, Sox9.ConclusionThe use of a DSD-specific animal model improves variant interpretation by correlating human sequence variants with transcriptome variation.


American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2017

MAP3K1‐related gonadal dysgenesis: Six new cases and review of the literature

Andrea Granados; Veronica I. Alaniz; Lauren Mohnach; Hayk Barseghyan; Eric Vilain; Harry Ostrer; Elisabeth H. Quint; Ming Chen; Catherine E. Keegan

Investigation of disorders of sex development (DSD) has resulted in the discovery of multiple sex‐determining genes. MAP3K1 encodes a signal transduction regulator in the sex determination pathway and is emerging as one of the more common genes responsible for 46,XY DSD presenting as complete or partial gonadal dysgenesis. Clinical assessment, endocrine evaluation, and genetic analysis were performed in six individuals from four unrelated families with 46,XY DSD. All six individuals were found to have likely pathogenic MAP3K1 variants. Three of these individuals presented with complete gonadal dysgenesis, characterized by bilateral streak gonads with typical internal and external female genitalia, while the other three presented with partial gonadal dysgenesis, characterized by incomplete testicular development, resulting in clitoral hypertrophy with otherwise typical female external genitalia. Testing for MAP3K1 variants should be considered in patients with 46,XY complete or partial gonadal dysgenesis, particularly in families with multiple members affected with 46,XY DSD. Identification of a MAP3K1 variant should prompt an evaluation for DSD in female siblings of the proband.


Genome Medicine | 2017

Next-generation mapping: a novel approach for detection of pathogenic structural variants with a potential utility in clinical diagnosis

Hayk Barseghyan; Wilson Tang; Richard T. Wang; Miguel Almalvez; Eva Segura; Matthew S. Bramble; Allen Lipson; Emilie D. Douine; Hane Lee; Emmanuèle Délot; Stanley F. Nelson; Eric Vilain

BackgroundMassively parallel DNA sequencing, such as exome sequencing, has become a routine clinical procedure to identify pathogenic variants responsible for a patient’s phenotype. Exome sequencing has the capability of reliably identifying inherited and de novo single-nucleotide variants, small insertions, and deletions. However, due to the use of 100–300-bp fragment reads, this platform is not well powered to sensitively identify moderate to large structural variants (SV), such as insertions, deletions, inversions, and translocations.MethodsTo overcome these limitations, we used next-generation mapping (NGM) to image high molecular weight double-stranded DNA molecules (megabase size) with fluorescent tags in nanochannel arrays for de novo genome assembly. We investigated the capacity of this NGM platform to identify pathogenic SV in a series of patients diagnosed with Duchenne muscular dystrophy (DMD), due to large deletions, insertion, and inversion involving the DMD gene.ResultsWe identified deletion, duplication, and inversion breakpoints within DMD. The sizes of deletions were in the range of 45–250 Kbp, whereas the one identified insertion was approximately 13 Kbp in size. This method refined the location of the break points within introns for cases with deletions compared to current polymerase chain reaction (PCR)-based clinical techniques. Heterozygous SV were detected in the known carrier mothers of the DMD patients, demonstrating the ability of the method to ascertain carrier status for large SV. The method was also able to identify a 5.1-Mbp inversion involving the DMD gene, previously identified by RNA sequencing.ConclusionsWe showed the ability of NGM technology to detect pathogenic structural variants otherwise missed by PCR-based techniques or chromosomal microarrays. NGM is poised to become a new tool in the clinical genetic diagnostic strategy and research due to its ability to sensitively identify large genomic variations.


Genetic Steroid Disorders | 2014

Chapter 7 – The Genetics of Ovotesticular Disorders of Sex Development

Hayk Barseghyan; Eric Vilain

Ovotesticular DSDs (OT-DSDs) are disorders of sex development in which both testicular and ovarian tissues are present in the same individual. We review the phenotypic variability of OT-DSDs, their sex chromosome constitution, and their molecular genetics, which remain for most patients, poorly understood.

Collaboration


Dive into the Hayk Barseghyan's collaboration.

Top Co-Authors

Avatar

Eric Vilain

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ascia Eskin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tuck C. Ngun

University of California

View shared research outputs
Top Co-Authors

Avatar

Allen Lipson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge