Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ashok Jadhav is active.

Publication


Featured researches published by Ashok Jadhav.


American Journal of Physiology-endocrinology and Metabolism | 2009

Heme oxygenase system enhances insulin sensitivity and glucose metabolism in streptozotocin-induced diabetes

Joseph Fomusi Ndisang; Ashok Jadhav

Hyperglycemia-induced oxidative stress is a common phenomenon in diabetes. Since oxidative stress depletes adiponectin and insulin levels, we investigated whether an upregulated heme oxygenase (HO) system would attenuate the oxidative destruction of adiponectin/insulin and improve insulin sensitivity and glucose metabolism in streptozotocin (STZ)-induced type 1 diabetes. HO was upregulated with hemin (15 mg/kg ip) or inhibited with chromium mesoporphyrin (CrMP, 4 micromol/kg ip). Administering hemin to STZ-diabetic rats reduced hyperglycemia and improved glucose metabolism, whereas the HO inhibitor CrMP annulled the antidiabetic effects and/or exacerbated fasting/postprandial hyperglycemia. Interestingly, the antidiabetic effects of hemin lasted for 2 mo after termination of therapy and were accompanied by enhanced HO-1 and HO activity of the soleus muscle, along with potentiation of plasma antioxidants like bilirubin, ferritin, and superoxide dismutase, with corresponding elevation of the total antioxidant capacity. Importantly, hemin abated c-Jun NH2-terminal kinase (JNK), a substance known to inhibit insulin biosynthesis, and suppressed markers/mediators of oxidative stress including 8-isoprostane, nuclear-factor (NF)-kappaB, activating protein (AP)-1, and AP-2 of the soleus muscle. Furthermore, hemin therapy significantly attenuated pancreatic histopathological lesions including acinar cell necrosis, interstitial edema, vacuolization, fibrosis, and mononuclear cell infiltration. Correspondingly, hemin increased plasma insulin and potentiated agents implicated in insulin sensitization and insulin signaling such as adiponectin, adenosine monophosphate-activated protein kinase (AMPK), cAMP, cGMP, and glucose transporter (GLUT)4, a protein required for glucose uptake. These were accompanied by improved glucose tolerance [intraperitoneal glucose tolerance text (IPGTT)], decreased insulin intolerance [intraperitoneal insulin tolerance test (IPITT)], and reduced insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR) index], whereas CrMP nullified the hemin-dependent antidiabetic and insulin-sensitizing effects. In conclusion, by concomitantly enhancing insulin and paradoxically potentiating insulin sensitivity, this study unveils a novel, unique, and long-lasting antidiabetic characteristic of upregulating HO with hemin that could be exploited against insulin-resistant and insulin-dependent diabetes.


Endocrinology | 2010

Up-Regulating the Heme Oxygenase System with Hemin Improves Insulin Sensitivity and Glucose Metabolism in Adult Spontaneously Hypertensive Rats

Joseph Fomusi Ndisang; Nina Lane; Noor A. Syed; Ashok Jadhav

Accumulating clinical evidence indicates that impaired glucose tolerance is a common phenomenon in essential hypertension. Although recent evidence underscores the role of heme-oxygenase (HO) in diabetes, its effects on insulin sensitivity and glucose metabolism in spontaneously hypertensive rat (SHR), a model of essential hypertension with characteristics of metabolic syndrome including insulin resistance/impaired glucose metabolism remains largely unclear. Here we report the effects of the HO inducer, hemin, and the HO blocker, chromium-mesoporphyrin on insulin sensitivity and glucose metabolism in SHRs. Adult SHRs were severely hypertensive but normoglycemic. Hemin therapy lowered blood pressure, increased plasma insulin, decreased glycemia, and enhanced insulin sensitivity by improving glucose tolerance (ip glucose tolerance test) and insulin tolerance (ip insulin tolerance test) but reduced insulin resistance (homeostasis model assessment index). These effects were accompanied by increased gastrocnemius muscle HO-1, HO activity, cGMP, cAMP alongside antioxidants including bilirubin, ferritin, superoxide dismutase, catalase, and the total antioxidant capacity, whereas oxidative/inflammatory mediators like 8-isoprostane, nuclear-factor-kappaB, activating-protein-1, activating-protein-2, c-Jun-NH2-terminal-kinase, and heme were abated. Furthermore, hemin reduced proteinuria/albuminuria and enhanced the depressed levels of adiponectin, AMP-activated protein-kinase, and glucose transporter-4 in SHRs, suggesting that although SHRs are normoglycemic, insulin signaling and renal function may be impaired. Contrarily, the HO inhibitor chromium-mesoporphyrin exacerbated oxidative stress, aggravated insulin resistance, glucose tolerance, insulin tolerance and nephropathy. Hemin also enhanced HO signaling in Wistar Kyoto and Sprague Dawley rats and increased insulin sensitivity albeit less intensely than in SHRs, suggesting greater selectivity of HO in SHRs with dysfunctional insulin signaling. These results suggest that perturbations of insulin signaling may be a forerunner to hyperglycemia in essential hypertension. By concomitantly potentiating insulin-sensitizing agents, suppressing insulin/glucose intolerance, and abating oxidative stress, HO inducers may prevent metabolic and cardiovascular complications in essential hypertension.


Endocrinology | 2009

The heme oxygenase system abates hyperglycemia in Zucker diabetic fatty rats by potentiating insulin-sensitizing pathways.

Joseph Fomusi Ndisang; Nina Lane; Ashok Jadhav

Emerging evidence indicates that aldosterone causes oxidative stress by stimulating proinflammatory/oxidative mediators, including nuclear factor-kappaB, activating protein (AP-1), and c-Jun N-terminal kinase. Thus, in insulin-resistant type 2 diabetes (T2D), oxidative stress generated by hyperglycemia and aldosterone would potentiate the oxidative destruction of tissue and important regulators of glucose metabolism like adiponectin and insulin. Although heme oxygenase (HO)-1 is cytoprotective, its effects on T2D have not been fully characterized. Here we report an enduring antidiabetic effect of the HO inducer, hemin, on Zucker diabetic-fatty rat (ZDF), a model of insulin-resistant T2D. Chronically applied hemin to ZDF reduced and maintained significantly low fasting and postprandial hyperglycemia for 4 months after therapy. The antidiabetic effect was accompanied by enhanced HO activity, catalase, cyclic GMP, bilirubin, ferritin, total antioxidant capacity, and insulin. In contrast, reduced aldosterone alongside markers/mediators of oxidative stress, including 8-isoprostane, c-Jun N-terminal kinase, nuclear factor-kappaB, AP-1, and AP-2 were observed. Interestingly, in hemin-treated ZDF, inhibitory proteins of insulin-signaling, such as glycogen synthase kinase-3 and protein-tyrosine phosphatase-1B were reduced, whereas agents that promote insulin signaling including adiponectin, cAMP, AMP-activated protein kinase, aldolase-B, and glucose transporter-4 (GLUT4), were robustly increased. Correspondingly, hemin improved ip glucose tolerance, reduced insulin intolerance, and lowered insulin resistance (homeostasis model assessment of insulin resistance), and the inability of insulin to enhance GLUT4 was overturned. These results suggest that the suppression of hyperglycemia and aldosterone-induced oxidative stress alongside the potentiation of insulin-sensitizing pathways may account for the 4-month enduring antidiabetic effect. The synergistic interaction between the HO system, aldolase-B, adiponectin, AMP-activated protein kinase, and GLUT4 may be explored for novel strategies against postprandial/fasting hyperglycemia and insulin-resistant T2D.


Endocrinology | 2009

Up-regulating the hemeoxygenase system enhances insulin sensitivity and improves glucose metabolism in insulin-resistant diabetes in Goto-Kakizaki rats.

Joseph Fomusi Ndisang; Ashok Jadhav

Insulin-mediated signal transduction is positively correlated to adiponectin, adenosine monophosphate-activated protein kinase (AMPK), and glucose-transporter-4 (GLUT4) but negatively to oxidative/inflammatory mediators such as nuclear factor-kappaB, activating-protein (AP)-1, AP-2, and c-Jun-N-terminal-kinase. Although hemeoxygenase (HO) suppresses oxidative insults, its effects on insulin-sensitizing agents like AMPK and GLUT4 remains unclear and were investigated using Goto-Kakizaki rats (GK), a nonobese insulin-resistant type-2 diabetic model. HO was induced with hemin or inhibited with chromium mesoporphyrin (CrMP). The application of hemin to GK rats evoked a 3-month antidiabetic effect, whereas the HO-inhibitor, CrMP, exacerbated hyperglycemia and nullified insulin-signaling/glucose metabolism. Interestingly, the antidiabetic was accompanied by a paradoxical increase of insulin alongside the potentiation of insulin-sensitizing agents such as adiponectin, AMPK, and GLUT4 in the gastrocnemius muscle. Furthermore, hemin enhanced mediators/regulators of insulin signaling like cGMP and cAMP and suppressed oxidative insults by up-regulating HO-1, HO activity, superoxide dismutase, catalase, and the total antioxidant capacity in the gastrocnemius muscle. Accordingly, oxidative markers/mediators including nuclear factor-kappaB, AP-1, AP-2, c-Jun-N-terminal-kinase, and 8-isoprostane were abated, whereas CrMP annulled the cytoprotective and antidiabetic effects of hemin. Correspondingly, ip glucose tolerance, insulin tolerance, and homeostasis model assessment insulin resistance analyses revealed improved glucose tolerance, reduced insulin intolerance, enhanced insulin sensitivity, and reduced insulin resistance in hemin-treated GK rats. In contrast, CrMP, abolished the insulin-sensitizing effects and restored and/or exacerbated insulin resistance. Our study unveils a 3-month enduring antidiabetic effect of hemin and unmasks the synergistic interaction among the HO system, adiponectin, AMPK, and GLUT4 that could be explored to enhance insulin signaling and improve glucose metabolism in insulin-resistant diabetes.


American Journal of Physiology-endocrinology and Metabolism | 2009

Upregulation of the heme oxygenase system ameliorates postprandial and fasting hyperglycemia in type 2 diabetes

Joseph Fomusi Ndisang; Nina Lane; Ashok Jadhav

In type 2 diabetes (T2D), postprandial and fasting hyperglycemia are important predictors of cardiovascular diseases; however, few drugs are currently available to simultaneously suppress these conditions. Here, we report an enduring antidiabetic effect of the heme oxygenase (HO) inducer hemin on Goto-Kakizaki rats (GK), a nonobese insulin-resistant T2D model. HO breaks down the heme-moiety-generating antioxidants (biliverdin/bilirubin and ferritin) and carbon monoxide, which stimulate insulin secretion. Hemin induces HO-1 to potentiate HO activity and the HO-derived products. Chronically applied hemin (30 mg/kg ip) for a month reduced and maintained fasting glucose at physiological levels for 3 mo. Before therapy, glucose levels were 9.3 +/- 0.3 mmol/l (n = 14). At 1, 2, and 3 mo posttherapy, we recorded 6.7 +/- 0.13, 5.9 +/- 0.2, and 7.2 +/- 0.2 mmol/l, respectively. Hemin was also effective against postprandial hyperglycemia (14.6 +/- 1.1 vs. 7.5 +/- 0.4 mmol/l; n = 14; P < 0.01), and the effect remained sustained for 3 mo after therapy. The reduction of hyperglycemia was accompanied by enhanced HO-1, HO activity, and cGMP of the soleus muscle, alongside increased plasma bilirubin, ferritin, SOD, total antioxidant capacity, and insulin levels, whereas markers/mediators of oxidative stress like urinary-8-isoprostane and soleus muscle nitrotyrosine, NF-kappaB, and activator protein-1 and -2 were abated. Furthermore, inhibitors of insulin signaling including soleus muscle glycogen synthase kinase-3 and JNK were reduced, while the insulin-sensitizing adipokine, adiponectin, alongside AMPK were increased. Correspondingly, hemin improved glucose tolerance, suppressed insulin intolerance, reduced insulin resistance, and overturned the inability of insulin to enhance glucose transporter 4, a protein required for glucose uptake. Hemin also upregulated HO-1/HO activity and cGMP and lowered glucose in euglycemic Sprague-Dawley control rats albeit less intensely, suggesting greater selectivity of the HO system in diabetic conditions. In conclusion, reduced oxidative stress alongside the concomitant and paradoxical enhancement of insulin secretion and insulin-sensitizing pathways may account for the 3-mo-enduring antidiabetic effect. The synergistic interaction among HO, adiponectin, and GLUT4 may be explored against insulin-resistant diabetes.


Hypertension | 2008

Interaction Among Heme Oxygenase, Nuclear Factor-κB, and Transcription Activating Factors in Cardiac Hypertrophy in Hypertension

Ashok Jadhav; Emina Torlakovic; Joseph Fomusi Ndisang

Deoxycorticosterone acetate–induced hypertension is a volume overload and human primary aldosteronism model characterized by severe cardiac lesions attributed to elevated inflammation, oxidative stress, fibrosis, and hypertrophy. An important cytoprotective pathway that counteracts tissue insults is the heme oxygenase (HO) system. Although the HO-1 gene promoter contains consensus binding sites for proinflammatory/oxidative transcription factors like nuclear factor-&kgr;B, activating protein (AP)-1, and AP-2, the effects of HO inducers on these transcription factors in cardiac lesions of deoxycorticosterone acetate hypertension are not fully understood. Hemin therapy normalized systolic blood pressure and markedly reduced the left:right ventricular ratio, left ventricular wall thickness, and left ventricle:body weight ratio, whereas the HO blocker, chromium mesoporphyrin, exacerbated cardiac fibrosis/hypertrophy in deoxycorticosterone acetate–hypertensive rats. The cardioprotection by hemin was accompanied by increased HO-1, HO activity, cGMP, superoxide dismutase, catalase, the total antioxidant capacity alongside the reduction of 8-isoprostane, AP-1, AP-2, nuclear factor-&kgr;B, and c-Jun-NH2-terminal kinase, whereas chromium mesoporphyrin abolished the hemin effects. Furthermore, hemin therapy attenuated transforming growth factor-β1 and extracellular matrix proteins like fibronectin and collagen, with a corresponding reduction of histopathologic lesions, including longitudinal/cross-sectional muscle fiber thickness, scarring, muscular hypertrophy, coronary arteriolar thickening, and collagen deposition. The suppression of AP-1, AP-2, nuclear factor-&kgr;B, and c-Jun-NH2-terminal kinase proinflammatory/oxidative mediators in the left ventricle of hemin-treated animals is a novel observation that may account for cardioprotection in deoxycorticosterone acetate hypertension. By concomitantly upregulating HO activity and cGMP and potentiating the total antioxidant status, hemin therapy reduced hypertension, suppressed oxidative stress, and attenuated extracellular matrix and remodeling proteins, with a reduction of histopathologic lesions that characterize cardiac fibrosis, hypertrophy, and end-stage organ damage.


Journal of Pharmacology and Experimental Therapeutics | 2013

The Heme Oxygenase System Selectively Enhances the Anti-Inflammatory Macrophage-M2 Phenotype, Reduces Pericardial Adiposity, and Ameliorated Cardiac Injury in Diabetic Cardiomyopathy in Zucker Diabetic Fatty Rats

Ashok Jadhav; Shuchita Tiwari; Paul Lee; Joseph Fomusi Ndisang

Cardiac function is adversely affected by pericardial adiposity. We investigated the effects of the heme oxygenase (HO) inducer, hemin on pericardial adiposity, macrophage polarization, and diabetic cardiopathy in Zucker diabetic fatty rats (ZDFs) with use of echocardiographic, quantitative real-time polymerase chain reaction, Western immunoblotting, enzyme immunoassay, and spectrophotometric analysis. In ZDFs, hemin administration increased HO activity; normalized glycemia; potentiated insulin signaling by enhancing insulin receptor substrate 1(IRS-1), phosphatidylinositol-3-kinase (PI3K), and protein kinase B (PKB)/Akt; suppressed pericardial adiposity, cardiac hypertrophy, and left ventricular longitudinal muscle fiber thickness, a pathophysiological feature of cardiomyocyte hypertrophy; and correspondingly reduced systolic blood pressure, total peripheral resistance, and pro-inflammatory/oxidative mediators, including nuclear factor κB (NF-κB), cJNK, c-Jun-N-terminal kinase (cJNK), endothelin (ET-1), tumor necrosis factor α (TNF-α), interleukin (IL)–6, IL-1β, activating protein 1 (AP-1), and 8-isoprostane, whereas the HO inhibitor, stannous mesoporphyrin, nullified the effects. Furthermore, hemin reduced the pro-inflammatory macrophage M1 phenotype, but enhanced the M2 phenotype that dampens inflammation. Because NF-κB activates TNFα, IL-6, and IL-1β and TNF-α, cJNK, and AP-1 impair insulin signaling, the high levels of these cytokines in obesity/diabetes would create a vicious cycle that, together with 8-isoprostane and ET-1, exacerbates cardiac injury, compromising cardiac function. Therefore, the concomitant reduction of pro-inflammatory cytokines and macrophage infiltration coupled to increased expressions of IRS-1, PI3K, and PKB may account for enhanced glucose metabolism and amelioration of cardiac injury and function in diabetic cardiomyopathy. The hemin-induced preferential polarization of macrophages toward anti-inflammatory macrophage M2 phenotype in cardiac tissue with concomitant suppression of pericardial adiposity in ZDFs are novel findings. These data unveil the benefits of hemin against pericardial adiposity, impaired insulin signaling, and diabetic cardiomyopathy and suggest that its multifaceted protective mechanisms include the suppression of inflammatory/oxidative mediators.


American Journal of Physiology-renal Physiology | 2009

Hemin therapy attenuates kidney injury in deoxycorticosterone acetate-salt hypertensive rats

Ashok Jadhav; Emina Torlakovic; Joseph Fomusi Ndisang

Upregulating the heme oxygenase (HO) system removes the prooxidant heme, and thus is cytoprotective. Additionally, the products from the HO pathway including, carbon monoxide, bilirubin, and biliverdin, scavenge reactive oxygen species, inhibit lipid peroxidation, and suppress tissue inflammation, while the iron formed enhances the synthesis of the antioxidant ferritin. Deoxycorticosterone acetate (DOCA)-salt hypertension, a model of human primary aldosteronism, causes oxidative stress and impairs renal function by stimulating inflammatory/oxidative transcription factors such as NF-kappaB and activating protein (AP-1). The effect of the HO system in end-organ damage in mineralocorticoid-induced hypertension has not been fully characterized. In this study, the administration of the HO inducer hemin lowered blood pressure (191 vs. 135 mmHg; n = 22, P < 0.01), increased creatinine clearance, and reduced kidney hypertrophy proteinuria, albuminuria, and histopathological lesions, including glomerular hypertrophy, glomerulosclerosis, tubular dilation, tubular cast formation, and interstitial mononuclear cell infiltration in nephrectomy/DOCA-high-salt-hypertension. The renoprotection was accompanied by reduced levels of NF-kappaB, AP-1, fibronectin, transforming growth factor (TGF)-beta, and 8-isoprostane, a marker of oxidative stress. Correspondingly, a robust increase in total antioxidant capacity, HO activity, cGMP, and an antioxidant like ferritin was observed in hemin-treated animals. Our findings suggest that suppression of oxidative/inflammatory insults alongside the corresponding decline of fibronectin and TGF-beta, an activator of extracellular matrix proteins, may account for the attenuation of renal histopathological lesions and the antihypertrophic effects of hemin. The multifaceted interaction among the HO system, TGF-beta, fibronectin, AP-1, and NF-kappaB may be explored to design new drugs against end-stage-organ damage.


Journal of Cardiac Failure | 2009

Upregulating the heme oxygenase system suppresses left ventricular hypertrophy in adult spontaneously hypertensive rats for 3 months.

Joseph Fomusi Ndisang; Ashok Jadhav

BACKGROUND Aldosterone and phospholipase C (PLC) stimulate nuclear factor-kappaB (NF-kappaB) and activating-protein (AP-1), causing fibrosis and hypertrophy. Besides harboring binding sites for NF-kappaB and AP-1, heme oxygenase (HO-1) generates cytoprotective products, including bilirubin and ferritin. The multifaceted interaction between HO-1 and aldosterone-PLC profibrotic axis in cardiac hypertrophy of spontaneously hypertensive rats (SHR) was studied. METHODS AND RESULTS HO-1 was induced with hemin or blocked with chromium mesoporphyrin (CrMP). The study groups included: (A) controls (SHR, WKY, and SD), (B) SHR+hemin, (C) SHR+hemin+CrMP, (D) SHR+CrMP, and (E) SHR+vehicle. Histological and morphological/morphometrical, quantitative reverse transcription-polymerase chain reaction, Western blot, enzyme immunoassay, and spectrophotometric assays were used to assess the effect of the HO system on cardiac hypertrophy. Hemin therapy evoked a 3-month enduring cardioprotection in adult SHR by lowering blood pressure, and reducing left-to-right ventricular ratio, left ventricular wall-thickness, and left ventricle-to-body-weight ratio, whereas CrMP exacerbated cardiac fibrosis/hypertrophy. The cardioprotection was accompanied by reduced aldosterone, PLC, inositol-triphosphate, NF-kappaB, AP-1, heme, and 8-isoprostane, a marker of oxidative stress, whereas HO-1, HO activity, cGMP, bilirubin, ferritin, superoxide dismutase, and the total antioxidant capacity were increased. Correspondingly, extracellular matrix/remodeling proteins such as fibronectin, collagen-1, collagen-IV, alongside cardiac histopathological lesions including fibrosis, scarring, muscular-hypertrophy, coronary-arteriolar thickening, and interstitial/perivascular collagen deposition were attenuated. CONCLUSIONS Our study unveils sustained cardioprotection by hemin that may have clinical relevance.


Journal of Hypertension | 2008

Crosstalk between the heme oxygenase system, aldosterone, and phospholipase C in hypertension.

Joseph Fomusi Ndisang; Nina Lane; Ashok Jadhav

Background Aldosterone is a mineral corticoid hormone that is produced in response to angiotensin-II, and like angiotensin-II, stimulates inflammation, oxidative stress, and fibrosis by activating nuclear factor-κB and activating protein-1. Recent evidence, however, indicates that aldosterone stimulates phospholipase C and activates nuclear factor-κB and activating protein-1. Although the heme oxygenase system is cytoprotective, its effects on aldosterone–phospholipase C signaling in deoxycorticosterone acetate (DOCA-salt) hypertension, a model of aldosteronism, and spontaneously hypertensive rat, a genetic model of human essential hypertension, have not been fully characterized. Methods In the present study, the heme oxygenase inducer, hemin, was given to spontaneously hypertensive and deoxycorticosterone acetate hypertensive rats, and the effects on blood pressure, aldosterone, nuclear factor-κB, activating protein-1, phospholipase C, and inositol 1,4,5-triphosphate were examined. Results Hemin therapy restored physiological blood pressure to spontaneously hypertensive rats (209.9 ± 0.9 to 127.3 ± 0.85 mmHg, n = 10, P < 0.01) and to deoxycorticosterone acetate salt hypertensive rats (195.7 ± 1.8 vs.132.5 ± 2.1 mmHg; P < 0.01, n = 10), but had no effect on age-matched normotensive Wistar–Kyoto or Sprague–Dawley strains. The antihypertensive effect was accompanied by enhanced heme oxygenase activity, upregulated cyclic guanosine monophosphate-protein kinase G signaling, increased superoxide dismutase activity, and the potentiation of total antioxidant capacity, whereas aldosterone, activating protein-1, and nuclear factor-κB were reduced. Furthermore, hemin suppressed phospholipase C activity, attenuated inositol 1,4,5-triphosphate, and reduced resting intracellular calcium in the aorta. Conclusion Collectively, our results suggest that the concomitant depletion of aldosterone, phospholipase C-inositol 1,4,5-triphosphate activity, resting intracellular calcium and the corresponding decline of inflammatory, and oxidative insults may account for the antihypertensive effects of hemin in deoxycorticosterone acetate hypertension and spontaneously hypertensive rats.

Collaboration


Dive into the Ashok Jadhav's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nina Lane

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Balsevich

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Manish Mishra

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Shuchita Tiwari

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Ahmed Shoker

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Noor A. Syed

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Paul Lee

University of Saskatchewan

View shared research outputs
Researchain Logo
Decentralizing Knowledge