Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Assaf Horesh is active.

Publication


Featured researches published by Assaf Horesh.


Science | 2012

Ptf 11kx: A type ia supernova with a symbiotic nova progenitor

Benjamin E. P. Dilday; D. A. Howell; S. B. Cenko; Jeffrey M. Silverman; Peter E. Nugent; Sagi Ben-Ami; Lars Bildsten; M. Bolte; Michael Endl; A. V. Filippenko; Orly Gnat; Assaf Horesh; E. Y. Hsiao; Mansi M. Kasliwal; David Kirkman; K. Maguire; G. W. Marcy; K. Moore; Y.-C. Pan; Jerod T. Parrent; Philipp Podsiadlowski; Robert Michael Quimby; Assaf Sternberg; Nao Suzuki; D. R. Tytler; Dong Xu; J. S. Bloom; Avishay Gal-Yam; I. M. Hook; S. R. Kulkarni

Stellar Explosions Stars that are born with masses greater than eight times that of the Sun end their lives in luminous explosions known as supernovae. Over the past decade, access to improved sky surveys has revealed rare types of supernovae that are much more luminous than any of those that were known before. Gal-Yam (p. 927) reviews these superluminous events and groups them into three classes that share common observational and physical characteristics. Gamma-ray bursts are another type of extreme explosive events related to the death of massive stars, which occur once per day somewhere in the universe and produce short-lived bursts of gamma-ray light. Gehrels and Mészáros (p. 932) review what has been learned about these events since the launch of NASAs Swift (2004) and Fermi (2008) satellites. The current interpretation is that gamma-ray bursts are related to the formation of black holes. Type Ia supernovae are used as cosmological distance indicators. They are thought to be the result of the thermonuclear explosion of white dwarf stars in binary systems, but the nature of the stellar companion to the white dwarf is still debated. Dilday et al. (p. 942) report high-resolution spectroscopy of the supernova PTF 11kx, which was detected on 26 January 2011 by the Palomar Transient Factory survey. The data suggest a red giant star companion whose material got transferred to the white dwarf. Spectroscopic data imply that a stellar explosion arose from a binary consisting of a white dwarf and a red giant star. There is a consensus that type Ia supernovae (SNe Ia) arise from the thermonuclear explosion of white dwarf stars that accrete matter from a binary companion. However, direct observation of SN Ia progenitors is lacking, and the precise nature of the binary companion remains uncertain. A temporal series of high-resolution optical spectra of the SN Ia PTF 11kx reveals a complex circumstellar environment that provides an unprecedentedly detailed view of the progenitor system. Multiple shells of circumstellar material are detected, and the SN ejecta are seen to interact with circumstellar material starting 59 days after the explosion. These features are best described by a symbiotic nova progenitor, similar to RS Ophiuchi.


The Astrophysical Journal | 2012

SWIFT J2058.4+0516: DISCOVERY OF A POSSIBLE SECOND RELATIVISTIC TIDAL DISRUPTION FLARE?

S. Bradley Cenko; Hans A. Krimm; Assaf Horesh; Dale A. Frail; J. A. Kennea; Andrew J. Levan; Stephen T. Holland; Nathaniel R. Butler; Robert Michael Quimby; Joshua S. Bloom; Alexei V. Filippenko; Avishay Gal-Yam; J. Greiner; S. R. Kulkarni; Eran O. Ofek; Felipe Olivares E.; Patricia Schady; Jeffrey M. Silverman; Nial R. Tanvir; Dong Xu

We report the discovery by the Swift hard X-ray monitor of the transient source Swift J2058.4+0516 (Sw J2058+05). Our multi-wavelength follow-up campaign uncovered a long-lived (duration ≳ months), luminous X-ray (L_(X, iso) ≈ 3 × 10^(47) erg s^(–1)) and radio (νL_(ν, iso) ≈ 10^(42) erg s^(–1)) counterpart. The associated optical emission, however, from which we measure a redshift of 1.1853, is relatively faint, and this is not due to a large amount of dust extinction in the host galaxy. Based on numerous similarities with the recently discovered GRB 110328A/Swift J164449.3+573451 (Sw J1644+57), we suggest that Sw J2058+05 may be the second member of a new class of relativistic outbursts resulting from the tidal disruption of a star by a supermassive black hole. If so, the relative rarity of these sources (compared with the expected rate of tidal disruptions) implies that either these outflows are extremely narrowly collimated (θ < 1°) or only a small fraction of tidal disruptions generate relativistic ejecta. Analogous to the case of long-duration gamma-ray bursts and core-collapse supernovae, we speculate that rapid spin of the black hole may be a necessary condition to generate the relativistic component. Alternatively, if powered by gas accretion (i.e., an active galactic nucleus (AGN)), Sw J2058+05 would seem to represent a new mode of variability in these sources, as the observed properties appear largely inconsistent with known classes of AGNs capable of generating relativistic jets (blazars, narrow-line Seyfert 1 galaxies).


The Astrophysical Journal | 2011

SN 2011dh: discovery of a type IIb supernova from a compact progenitor in the nearby galaxy M51

Iair Arcavi; Avishay Gal-Yam; Ofer Yaron; Assaf Sternberg; Itay Rabinak; Eli Waxman; Mansi M. Kasliwal; Robert Michael Quimby; Eran O. Ofek; Assaf Horesh; S. R. Kulkarni; Alexei V. Filippenko; Jeffrey M. Silverman; S. Bradley Cenko; Weidong Li; Joshua S. Bloom; Mark Sullivan; Peter E. Nugent; Dovi Poznanski; Evgeny Gorbikov; Benjamin J. Fulton; D. Andrew Howell; D. F. Bersier; Amedee Riou; Stephane Lamotte-Bailey; Thomas Griga; Judith G. Cohen; S. Hachinger; David Polishook; Dong Xu

On 2011 May 31 UT a supernova (SN) exploded in the nearby galaxy M51 (the Whirlpool Galaxy). We discovered this event using small telescopes equipped with CCD cameras and also detected it with the Palomar Transient Factory survey, rapidly confirming it to be a Type II SN. Here, we present multi-color ultraviolet through infrared photometry which is used to calculate the bolometric luminosity and a series of spectra. Our early-time observations indicate that SN 2011dh resulted from the explosion of a relatively compact progenitor star. Rapid shock-breakout cooling leads to relatively low temperatures in early-time spectra, compared to explosions of red supergiant stars, as well as a rapid early light curve decline. Optical spectra of SN 2011dh are dominated by H lines out to day 10 after explosion, after which He I lines develop. This SN is likely a member of the cIIb (compact IIb) class, with progenitor radius larger than that of SN 2008ax and smaller than the eIIb (extended IIb) SN 1993J progenitor. Our data imply that the object identified in pre-explosion Hubble Space Telescope images at the SN location is possibly a companion to the progenitor or a blended source, and not the progenitor star itself, as its radius (~10^(13) cm) would be highly inconsistent with constraints from our post-explosion spectra.


Nature | 2013

An outburst from a massive star 40 days before a supernova explosion

Eran O. Ofek; S. B. Cenko; Mansi M. Kasliwal; Avishay Gal-Yam; S. R. Kulkarni; I. Arcavi; Lars Bildsten; J. S. Bloom; Assaf Horesh; Dale Andrew Howell; A. V. Filippenko; R. R. Laher; D. Murray; Ehud Nakar; P. Nugent; Jeffrey M. Silverman; Nir J. Shaviv; Jason A. Surace; O. Yaron

Some observations suggest that very massive stars experience extreme mass-loss episodes shortly before they explode as supernovae, as do several models. Establishing a causal connection between these mass-loss episodes and the final explosion would provide a novel way to study pre-supernova massive-star evolution. Here we report observations of a mass-loss event detected 40 days before the explosion of the type IIn supernova SN 2010mc (also known as PTF 10tel). Our photometric and spectroscopic data suggest that this event is a result of an energetic outburst, radiating at least 6 × 1047 erg of energy and releasing about 10−2 solar masses of material at typical velocities of 2,000 km s−1. The temporal proximity of the mass-loss outburst and the supernova explosion implies a causal connection between them. Moreover, we find that the outburst luminosity and velocity are consistent with the predictions of the wave-driven pulsation model, and disfavour alternative suggestions.


Nature | 2014

A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind

Avishay Gal-Yam; Iair Arcavi; Eran O. Ofek; Sagi Ben-Ami; S. B. Cenko; Mansi M. Kasliwal; Y. Cao; O. Yaron; David Tal; Jeffrey M. Silverman; Assaf Horesh; A. De Cia; F. Taddia; Jesper Sollerman; Daniel A. Perley; Paul M. Vreeswijk; S. R. Kulkarni; P. Nugent; A. V. Filippenko; J. C. Wheeler

The explosive fate of massive Wolf–Rayet stars (WRSs) is a key open question in stellar physics. An appealing option is that hydrogen-deficient WRSs are the progenitors of some hydrogen-poor supernova explosions of types IIb, Ib and Ic (ref. 2). A blue object, having luminosity and colours consistent with those of some WRSs, has recently been identified in pre-explosion images at the location of a supernova of type Ib (ref. 3), but has not yet been conclusively determined to have been the progenitor. Similar work has so far only resulted in non-detections. Comparison of early photometric observations of type Ic supernovae with theoretical models suggests that the progenitor stars had radii of less than 1012 centimetres, as expected for some WRSs. The signature of WRSs, their emission line spectra, cannot be probed by such studies. Here we report the detection of strong emission lines in a spectrum of type IIb supernova 2013cu (iPTF13ast) obtained approximately 15.5 hours after explosion (by ‘flash spectroscopy’, which captures the effects of the supernova explosion shock breakout flash on material surrounding the progenitor star). We identify Wolf–Rayet-like wind signatures, suggesting a progenitor of the WN(h) subclass (those WRSs with winds dominated by helium and nitrogen, with traces of hydrogen). The extent of this dense wind may indicate increased mass loss from the progenitor shortly before its explosion, consistent with recent theoretical predictions.


The Astrophysical Journal | 2013

DISCOVERY, PROGENITOR AND EARLY EVOLUTION OF A STRIPPED ENVELOPE SUPERNOVA iPTF13bvn

Yi Cao; Mansi M. Kasliwal; Iair Arcavi; Assaf Horesh; Paul Hancock; S. Valenti; S. Bradley Cenko; S. R. Kulkarni; Avishay Gal-Yam; Evgeny Gorbikov; Eran O. Ofek; David J. Sand; Ofer Yaron; Melissa Lynn Graham; Jeffrey M. Silverman; J. Craig Wheeler; G. H. Marion; Emma S. Walker; Paolo A. Mazzali; D. Andrew Howell; K. L. Li; Albert K. H. Kong; Joshua S. Bloom; Peter E. Nugent; Jason A. Surace; Frank J. Masci; John M. Carpenter; N. Degenaar; Christopher R. Gelino

The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC 5806 (22.5 Mpc). Our spectral sequence in the optical and infrared suggests a Type Ib classification. We identify a blue progenitor candidate in deep pre-explosion imaging within a 2σ error circle of 80 mas (8.7 pc). The candidate has an M_B luminosity of −5.52 ± 0.39 mag and a B − I color of 0.25 ± 0.25 mag. If confirmed by future observations, this would be the first direct detection for a progenitor of a Type Ib. Fitting a power law to the early light curve, we find an extrapolated explosion date around 0.6 days before our first detection. We see no evidence of shock cooling. The pre-explosion detection limits constrain the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in centimeter and millimeter wavelengths. Fitting a synchrotron self-absorption model to our radio data, we find a mass-loading parameter of 1.3×10^(12) g cm^(−1). Assuming a wind velocity of 10^3 km s^(−1), we derive a progenitor mass-loss rate of 3 × 10^(−5) M☉ yr^(−1). Our observations, taken as a whole, are consistent with a Wolf–Rayet progenitor of the supernova iPTF13bvn.


The Astrophysical Journal | 2012

Early Radio and X-Ray Observations of the Youngest nearby Type Ia Supernova PTF 11kly (SN 2011fe)

Assaf Horesh; S. R. Kulkarni; Derek B. Fox; John M. Carpenter; Mansi M. Kasliwal; Eran O. Ofek; Robert Michael Quimby; Avishay Gal-Yam; Bradley Cenko; de Antonius Bruyn; Atish Kamble; R. A. M. J. Wijers; Alexander Jonathan Van Der Horst; C. Kouveliotou; Philipp Podsiadlowski; Mark Sullivan; K. Maguire; D. Andrew Howell; Peter E. Nugent; Neil Gehrels; Nicholas M. Law; Dovi Poznanski; Michael M. Shara

On 2011 August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby Type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time.We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of Ṁ ≾ 10^(−8)(w/100 km s^(−1))M_☉ yr^(−1) from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations, we would have to wait for a long time (a decade or longer) in order to more meaningfully probe the circumstellar matter of SNe Ia.


The Astrophysical Journal | 2014

The Afterglow of GRB 130427A from 1 to 10^(16) GHz

Daniel A. Perley; S. B. Cenko; A. Corsi; Nial R. Tanvir; Andrew J. Levan; D. A. Kann; E. Sonbas; K. Wiersema; W. Zheng; Xuchao Zhao; J. M. Bai; M. Bremer; A. J. Castro-Tirado; Liang Chang; Kelsey I. Clubb; Dale A. Frail; Andrew S. Fruchter; Ersin Gogus; J. Greiner; Tolga Guver; Assaf Horesh; A. V. Filippenko; Sylvio Klose; Ji-Rong Mao; Adam N. Morgan; Alexei S. Pozanenko; S. Schmidl; B. Stecklum; M. Tanga; A. Volnova

We present multiwavelength observations of the afterglow of GRB 130427A, the brightest (in total fluence) gamma-ray burst (GRB) of the past 29 yr. Optical spectroscopy from Gemini-North reveals the redshift of the GRB to be z = 0.340, indicating that its unprecedented brightness is primarily the result of its relatively close proximity to Earth; the intrinsic luminosities of both the GRB and its afterglow are not extreme in comparison to other bright GRBs. We present a large suite of multiwavelength observations spanning from 300 s to 130 days after the burst and demonstrate that the afterglow shows relatively simple, smooth evolution at all frequencies, with no significant late-time flaring or rebrightening activity. The entire data set from 1 GHz to 10 GeV can be modeled as synchrotron emission from a combination of reverse and forward shocks in good agreement with the standard afterglow model, providing strong support to the applicability of the underlying theory and clarifying the nature of the GeV emission observed to last for minutes to hours following other very bright GRBs. A tenuous, wind-stratified circumburst density profile is required by the observations, suggesting a massive-star progenitor with a low mass-loss rate, perhaps due to low metallicity. GRBs similar in nature to GRB 130427A, inhabiting low-density media and exhibiting strong reverse shocks, are probably not uncommon but may have been difficult to recognize in the past owing to their relatively faint late-time radio emission; more such events should be found in abundance by the new generation of sensitive radio and millimeter instruments.


The Astrophysical Journal | 2011

The Progenitor of Supernova 2011dh/PTF11eon In Messier 51

Schuyler D. Van Dyk; Weidong Li; S. Bradley Cenko; Mansi M. Kasliwal; Assaf Horesh; Eran O. Ofek; Adam L. Kraus; Jeffrey M. Silverman; Iair Arcavi; Alexei V. Filippenko; Avishay Gal-Yam; Robert Michael Quimby; S. R. Kulkarni; Ofer Yaron; David Polishook

We have identified a luminous star at the position of supernova (SN) 2011dh/PTF11eon, in pre-SN archival, multi-band images of the nearby, nearly face-on galaxy Messier 51 (M51) obtained by the Hubble Space Telescope with the Advanced Camera for Surveys. This identification has been confirmed, to the highest available astrometric precision, using a Keck-II adaptive-optics image. The available early-time spectra and photometry indicate that the SN is a stripped-envelope, core-collapse Type IIb, with a more compact progenitor (radius ~ 10^(11) cm) than was the case for the well-studied SN IIb 1993J. We infer that the extinction to SN 2011dh and its progenitor arises from a low Galactic foreground contribution, and that the SN environment is of roughly solar metallicity. The detected object has absolute magnitude M^0_V ≈ –7.7 and effective temperature ~6000 K. The stars radius, ~10^(13) cm, is more extended than what has been inferred for the SN progenitor. We speculate that the detected star is either an unrelated star very near the position of the actual progenitor, or, more likely, the progenitors companion in a mass-transfer binary system. The position of the detected star in a Hertzsprung-Russell diagram is consistent with an initial mass of 17-19 M_☉. The light of this star could easily conceal, even in the ultraviolet, the presence of a stripped, compact, very hot (~10^5 K), nitrogen-rich Wolf-Rayet star progenitor.


Science | 2017

Illuminating gravitational waves: A concordant picture of photons from a neutron star merger

Mansi M. Kasliwal; Ehud Nakar; L. P. Singer; David L. Kaplan; David O. Cook; A. Van Sistine; Ryan M. Lau; C. Fremling; O. Gottlieb; Jacob E. Jencson; S. M. Adams; U. Feindt; Kenta Hotokezaka; S. Ghosh; Daniel A. Perley; Po-Chieh Yu; Tsvi Piran; J. R. Allison; G. C. Anupama; A. Balasubramanian; Keith W. Bannister; John Bally; J. Barnes; Sudhanshu Barway; Eric C. Bellm; V. Bhalerao; D. Bhattacharya; N. Blagorodnova; J. S. Bloom; P. R. Brady

GROWTH observations of GW170817 The gravitational wave event GW170817 was caused by the merger of two neutron stars (see the Introduction by Smith). In three papers, teams associated with the GROWTH (Global Relay of Observatories Watching Transients Happen) project present their observations of the event at wavelengths from x-rays to radio waves. Evans et al. used space telescopes to detect GW170817 in the ultraviolet and place limits on its x-ray flux, showing that the merger generated a hot explosion known as a blue kilonova. Hallinan et al. describe radio emissions generated as the explosion slammed into the surrounding gas within the host galaxy. Kasliwal et al. present additional observations in the optical and infrared and formulate a model for the event involving a cocoon of material expanding at close to the speed of light, matching the data at all observed wavelengths. Science, this issue p. 1565, p. 1579, p. 1559; see also p. 1554 Observations of a binary neutron star merger at multiple wavelengths can be explained by an off-axis relativistic cocoon model. Merging neutron stars offer an excellent laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart (EM170817) with gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic data set, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultrarelativistic jets. Instead, we suggest that breakout of a wide-angle, mildly relativistic cocoon engulfing the jet explains the low-luminosity gamma rays, the high-luminosity ultraviolet-optical-infrared, and the delayed radio and x-ray emission. We posit that all neutron star mergers may lead to a wide-angle cocoon breakout, sometimes accompanied by a successful jet and sometimes by a choked jet.

Collaboration


Dive into the Assaf Horesh's collaboration.

Top Co-Authors

Avatar

S. R. Kulkarni

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eran O. Ofek

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Peter E. Nugent

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Bradley Cenko

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Iair Arcavi

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Daniel A. Perley

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar

S. B. Cenko

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dale A. Frail

National Radio Astronomy Observatory

View shared research outputs
Researchain Logo
Decentralizing Knowledge