Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Assaf Zemach is active.

Publication


Featured researches published by Assaf Zemach.


Science | 2010

Genome-Wide Evolutionary Analysis of Eukaryotic DNA Methylation

Assaf Zemach; Ivy E. McDaniel; Pedro Silva; Daniel Zilberman

Epigenetic Maps Methylation of genomic DNA on cytosine bases provides critical epigenetic regulation of gene expression and is involved in silencing transposable elements (TEs) and repeated sequences, as well as regulating imprinted gene expression. Zemach et al. (p. 916, published online 15 April; see the Perspective by Jeltsch) analyzed DNA methylation in the genomes of five plants, five fungi, and seven animals by bisulfite sequencing. The data suggest that land plants and vertebrates, which have extensive DNA methylation, are under strong selective pressure to repress TEs, because of their sexual mode of reproduction. Unicellular animals and fungi that reproduce asexually are more likely to lose TE methylation. Although gene body methylation is evolutionarily ancient, it is also mutagenic, and so loss of this pathway has been relatively common and occurred early in fungal evolution and later in several plant and animal lineages. Analysis of DNA methylation in 17 species suggests a path for the evolution of this epigenetic mark. Eukaryotic cytosine methylation represses transcription but also occurs in the bodies of active genes, and the extent of methylation biology conservation is unclear. We quantified DNA methylation in 17 eukaryotic genomes and found that gene body methylation is conserved between plants and animals, whereas selective methylation of transposons is not. We show that methylation of plant transposons in the CHG context extends to green algae and that exclusion of histone H2A.Z from methylated DNA is conserved between plants and animals, and we present evidence for RNA-directed DNA methylation of fungal genes. Our data demonstrate that extant DNA methylation systems are mosaics of conserved and derived features, and indicate that gene body methylation is an ancient property of eukaryotic genomes.


Science | 2009

Genome-Wide Demethylation of Arabidopsis Endosperm

Tzung-Fu Hsieh; Christian A. Ibarra; Pedro Silva; Assaf Zemach; Leor Eshed-Williams; Robert L. Fischer; Daniel Zilberman

Dynamic Imprinting Gene imprinting—the silencing of either a maternally derived or paternally derived gene allele—is controlled in large part by DNA methylation. In plants, imprinting occurs in the endosperm, which nourishes the embryonic plant. Gehring et al. (p. 1447) and Hsieh et al. (p. 1451) analyzed the dynamics of DNA methylation in the endosperm and embryo of Arabidopsis and found extensive demethylation in the endosperm, suggesting that many imprinted genes are likely to exist. Gehring et al. characterized five imprinted genes in detail. Four of the 10 known imprinted genes are related homeodomain transcription factors. Furthermore, 5′ sequences demethylated in several of the genes were found to be derived from transposable elements, which supports the idea that imprinting arose as a by-product of silencing invading DNA. The endosperm genome of Arabidopsis shows extensive gene imprinting. Parent-of-origin-specific (imprinted) gene expression is regulated in Arabidopsis thaliana endosperm by cytosine demethylation of the maternal genome mediated by the DNA glycosylase DEMETER, but the extent of the methylation changes is not known. Here, we show that virtually the entire endosperm genome is demethylated, coupled with extensive local non-CG hypermethylation of small interfering RNA–targeted sequences. Mutation of DEMETER partially restores endosperm CG methylation to levels found in other tissues, indicating that CG demethylation is specific to maternal sequences. Endosperm demethylation is accompanied by CHH hypermethylation of embryo transposable elements. Our findings demonstrate extensive reconfiguration of the endosperm methylation landscape that likely reinforces transposon silencing in the embryo.


Science | 2012

Active DNA Demethylation in Plant Companion Cells Reinforces Transposon Methylation in Gametes

Christian A. Ibarra; Xiaoqi Feng; Vera K. Schoft; Tzung-Fu Hsieh; Rie Uzawa; Jessica A. Rodrigues; Assaf Zemach; Nina Chumak; Adriana Machlicova; Toshiro Nishimura; Denisse Rojas; Robert L. Fischer; Hisashi Tamaru; Daniel Zilberman

Intergenerational Transposable Shutdown Transposable elements (TEs) are a potential threat, especially to the germline genome. In many eukaryotes, TEs are shut down by DNA methylation and/or small-RNA–mediated silencing. Therefore, it seems counterintuitive that results obtained by Ibarra et al. (p. 1360) on Arabidopsis showed that in the cells of this plants sexual apparatus, many small TEs are demethylated by DEMETER (DME) DNA glycosylase and become activated. But it turns out that activation of the TEs triggers the formation of small-interfering RNAs, which in these experiments were seen to travel from the surrounding cells to the egg. Thus, activation of TEs in the companion cells “immunizes” the gametes via the interfering RNAs that shutdown the TEs in the gametes permanently. Activation of transposable elements in the companion cells of plant gametes can silence transposable elements in the gamete. The Arabidopsis thaliana central cell, the companion cell of the egg, undergoes DNA demethylation before fertilization, but the targeting preferences, mechanism, and biological significance of this process remain unclear. Here, we show that active DNA demethylation mediated by the DEMETER DNA glycosylase accounts for all of the demethylation in the central cell and preferentially targets small, AT-rich, and nucleosome-depleted euchromatic transposable elements. The vegetative cell, the companion cell of sperm, also undergoes DEMETER-dependent demethylation of similar sequences, and lack of DEMETER in vegetative cells causes reduced small RNA–directed DNA methylation of transposons in sperm. Our results demonstrate that demethylation in companion cells reinforces transposon methylation in plant gametes and likely contributes to stable silencing of transposable elements across generations.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Local DNA hypomethylation activates genes in rice endosperm

Assaf Zemach; M. Yvonne Kim; Pedro Silva; Jessica A. Rodrigues; Bradley Dotson; Matthew D. Brooks; Daniel Zilberman

Cytosine methylation silences transposable elements in plants, vertebrates, and fungi but also regulates gene expression. Plant methylation is catalyzed by three families of enzymes, each with a preferred sequence context: CG, CHG (H = A, C, or T), and CHH, with CHH methylation targeted by the RNAi pathway. Arabidopsis thaliana endosperm, a placenta-like tissue that nourishes the embryo, is globally hypomethylated in the CG context while retaining high non-CG methylation. Global methylation dynamics in seeds of cereal crops that provide the bulk of human nutrition remain unknown. Here, we show that rice endosperm DNA is hypomethylated in all sequence contexts. Non-CG methylation is reduced evenly across the genome, whereas CG hypomethylation is localized. CHH methylation of small transposable elements is increased in embryos, suggesting that endosperm demethylation enhances transposon silencing. Genes preferentially expressed in endosperm, including those coding for major storage proteins and starch synthesizing enzymes, are frequently hypomethylated in endosperm, indicating that DNA methylation is a crucial regulator of rice endosperm biogenesis. Our data show that genome-wide reshaping of seed DNA methylation is conserved among angiosperms and has a profound effect on gene expression in cereal crops.


The Plant Cell | 2005

DDM1 Binds Arabidopsis Methyl-CpG Binding Domain Proteins and Affects Their Subnuclear Localization

Assaf Zemach; Yan Li; Bess Wayburn; Hagit Ben-Meir; Vladimir Kiss; Yigal Avivi; Vyacheslav Kalchenko; Steven E. Jacobsen; Gideon Grafi

Methyl-CpG binding domain (MBD) proteins in Arabidopsis thaliana bind in vitro methylated CpG sites. Here, we aimed to characterize the binding properties of AtMBDs to chromatin in Arabidopsis nuclei. By expressing in wild-type cells AtMBDs fused to green fluorescent protein (GFP), we showed that AtMBD7 was evenly distributed at all chromocenters, whereas AtMBD5 and 6 showed preference for two perinucleolar chromocenters adjacent to nucleolar organizing regions. AtMBD2, previously shown to be incapable of binding in vitro–methylated CpG, was dispersed within the nucleus, excluding chromocenters and the nucleolus. Recruitment of AtMBD5, 6, and 7 to chromocenters was disrupted in ddm1 and met1 mutant cells, where a significant reduction in cytosine methylation occurs. In these mutant cells, however, AtMBD2 accumulated at chromocenters. No effect on localization was observed in the chromomethylase3 mutant showing reduced CpNpG methylation or in kyp-2 displaying a reduction in Lys 9 histone H3 methylation. Transient expression of DDM1 fused to GFP showed that DDM1 shares common sites with AtMBD proteins. Glutathione S-transferase pull-down assays demonstrated that AtMBDs bind DDM1; the MBD motif was sufficient for this interaction. Our results suggest that the subnuclear localization of AtMBD is not solely dependent on CpG methylation; DDM1 may facilitate localization of AtMBDs at specific nuclear domains.


Current Biology | 2010

Evolution of Eukaryotic DNA Methylation and the Pursuit of Safer Sex

Assaf Zemach; Daniel Zilberman

Cytosine methylation is an ancient process with conserved enzymology but diverse biological functions that include defense against transposable elements and regulation of gene expression. Here we will discuss the evolution and biological significance of eukaryotic DNA methylation, the likely drivers of that evolution, and major remaining mysteries.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality

Lanjuan Hu; Ning Li; Chunming Xu; Silin Zhong; Xiuyun Lin; Jingjing Yang; Tianqi Zhou; Anzhi Yuliang; Ying Wu; Yun-Ru Chen; Xiaofeng Cao; Assaf Zemach; Sachin Rustgi; Diter von Wettstein; Bao Liu

Significance CG cytosine methylation (mCG) is an important epigenetic marker present in most eukaryotic genomes that is maintained by an evolutionarily conserved DNA methyltransferase dubbed DNMT1 in mammals and MET1 in plants. Null mutation of DNMT1 or MET1 results in global loss of mCG and leads to embryonic death in mouse, inviability in human cancer cells, and wide-ranging developmental abnormality in Arabidopsis thaliana. This study characterizes global effects of null mutation of a MET1 gene in rice, a model plant for monocotyledons, through methylome, transcriptome, and small RNAome analyses. The findings of this study have implications for improving our understanding of the biological roles of cytosine methylation in monocots and, from an applied point of view, in epigenetic manipulation of cereal crops. Cytosine methylation at CG sites (mCG) plays critical roles in development, epigenetic inheritance, and genome stability in mammals and plants. In the dicot model plant Arabidopsis thaliana, methyltransferase 1 (MET1), a principal CG methylase, functions to maintain mCG during DNA replication, with its null mutation resulting in global hypomethylation and pleiotropic developmental defects. Null mutation of a critical CG methylase has not been characterized at a whole-genome level in other higher eukaryotes, leaving the generality of the Arabidopsis findings largely speculative. Rice is a model plant of monocots, to which many of our important crops belong. Here we have characterized a null mutant of OsMet1-2, the major CG methylase in rice. We found that seeds homozygous for OsMet1-2 gene mutation (OsMET1-2−/−), which directly segregated from normal heterozygote plants (OsMET1-2+/−), were seriously maldeveloped, and all germinated seedlings underwent swift necrotic death. Compared with wild type, genome-wide loss of mCG occurred in the mutant methylome, which was accompanied by a plethora of quantitative molecular phenotypes including dysregulated expression of diverse protein-coding genes, activation and repression of transposable elements, and altered small RNA profiles. Our results have revealed conservation but also distinct functional differences in CG methylases between rice and Arabidopsis.


The Plant Cell | 2006

Different Domains Control the Localization and Mobility of LIKE HETEROCHROMATIN PROTEIN1 in Arabidopsis Nuclei

Assaf Zemach; Yan Li; Hagit Ben-Meir; Moran Oliva; Assaf Mosquna; Vladimir Kiss; Yigal Avivi; Nir Ohad; Gideon Grafi

Plants possess a single gene for the structurally related HETEROCHROMATIN PROTEIN1 (HP1), termed LIKE-HP1 (LHP1). We investigated the subnuclear localization, binding properties, and dynamics of LHP1 proteins in Arabidopsis thaliana cells. Transient expression assays showed that tomato (Solanum lycopersicum) LHP1 fused to green fluorescent protein (GFP; Sl LHP1-GFP) and Arabidopsis LHP1 (At LHP1-GFP) localized to heterochromatic chromocenters and showed punctuated distribution within the nucleus; tomato but not Arabidopsis LHP1 was also localized within the nucleolus. Mutations of aromatic cage residues that recognize methyl K9 of histone H3 abolished their punctuated distribution and localization to chromocenters. Sl LHP1-GFP plants displayed cell type–dependent subnuclear localization. The diverse localization pattern of tomato LHP1 did not require the chromo shadow domain (CSD), whereas the chromodomain alone was insufficient for localization to chromocenters; a nucleolar localization signal was identified within the hinge region. Fluorescence recovery after photobleaching showed that Sl LHP1 is a highly mobile protein whose localization and retention are controlled by distinct domains; retention at the nucleolus and chromocenters is conferred by the CSD. Our results imply that LHP1 recruitment to chromatin is mediated, at least in part, through interaction with methyl K9 and that LHP1 controls different nuclear processes via transient binding to its nuclear sites.


Plant Science | 2015

Competency for shoot regeneration from Arabidopsis root explants is regulated by DNA methylation.

Or Shemer; Udi Landau; Héctor Candela; Assaf Zemach; Leor Williams

Plants exhibit high capacity to regenerate in three alternative pathways: tissue repair, somatic embryogenesis and de novo organogenesis. For most plants, de novo organ initiation can be easily achieved in tissue culture by exposing explants to auxin and/or cytokinin, yet the competence to regenerate varies among species and within tissues from the same plant. In Arabidopsis, root explants incubated directly on cytokinin-rich shoot inducing medium (SIM-direct), are incapable of regenerating shoots, and a pre-incubation step on auxin-rich callus inducing medium (CIM) is required to acquire competency to regenerate on the SIM. However the mechanism underlying competency acquisition still remains elusive. Here we show that the chromomethylase 3 (cmt3) mutant which exhibits significant reduction in CHG methylation, shows high capacity to regenerate on SIM-direct and that regeneration occurs via direct organogenesis. In WT, WUSCHEL (WUS) promoter, an essential gene for shoot formation, is highly methylated, and its expression on SIM requires pre-incubation on CIM. However, in cmt3, WUS expression induced by SIM-direct. We propose that pre-incubation on CIM is required for the re-activation of cell division. Following the transfer of roots to SIM, the intensive cell division activity continues, and in the presence of cytokinin leads to a dilution in DNA methylation that allows certain genes required for shoot regeneration to respond to SIM, thereby advancing shoot formation.


Journal of Biological Chemistry | 2008

The Three Methyl-CpG-binding Domains of AtMBD7 Control Its Subnuclear Localization and Mobility

Assaf Zemach; Ofer Gaspan; Gideon Grafi

Three methyl-CpG-binding domain (MBD) proteins in Arabidopsis, AtMBD5, AtMBD6, and AtMBD7, are functional in binding methylated CpG dinucleotides in vitro and localize to the highly CpG-methylated chromocenters in vivo. These proteins differ, however, in their subnuclear localization pattern; AtMBD5 and AtMBD6, each containing a single MBD motif, show preference for two perinucleolar chromocenters, whereas AtMBD7, a naturally occurring poly-MBD protein containing three MBD motifs, localizes to all chromocenters. Here we studied the significance of multiple MBD motifs for subnuclear localization and mobility in living cells. We found that the number of MBD motifs determines the subnuclear localization of the MBD protein. Furthermore, live kinetic experiments showed that AtMBD7-green fluorescent protein (GFP) has lower mobility than AtMBD5-GFP and AtMBD6-GFP, which is conferred by cooperative activity of its three MBD motifs. Thus, the number of MBD motifs appears to affect not only binding affinity and mobility within the nucleus, but also the subnuclear localization of the protein. Our results suggest that poly-MBD proteins can directly affect chromatin structure by inducing intra- and inter-chromatin compaction via bridging over multiple methylated CpG sites.

Collaboration


Dive into the Assaf Zemach's collaboration.

Top Co-Authors

Avatar

Gideon Grafi

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yigal Avivi

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Hagit Ben-Meir

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Pedro Silva

University of California

View shared research outputs
Top Co-Authors

Avatar

Ephraim Fass

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Jing Zhao

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Narendra Singh Yadav

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Shai Shahar

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Vladimir Kiss

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge