Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gideon Grafi is active.

Publication


Featured researches published by Gideon Grafi.


The Plant Cell | 2004

A Dominant Negative Mutant of Cyclin-Dependent Kinase A Reduces Endoreduplication but Not Cell Size or Gene Expression in Maize Endosperm

João T. Leiva-Neto; Gideon Grafi; Paolo A. Sabelli; Ricardo A. Dante; Young-Min Woo; Sheila Maddock; William J. Gordon-Kamm; Brian A. Larkins

Cells in maize (Zea mays) endosperm undergo multiple cycles of endoreduplication, with some attaining DNA contents as high as 96C and 192C. Genome amplification begins around 10 d after pollination, coincident with cell enlargement and the onset of starch and storage protein accumulation. Although the role of endoreduplication is unclear, it is thought to provide a mechanism that increases cell size and enhances gene expression. To investigate this process, we reduced endoreduplication in transgenic maize endosperm by ectopically expressing a gene encoding a dominant negative mutant form of cyclin-dependent kinase A. This gene was regulated by the 27-kD γ-zein promoter, which restricted synthesis of the defective enzyme to the endoreduplication rather than the mitotic phase of endosperm development. Overexpression of a wild-type cyclin-dependent kinase A increased enzyme activity but had no effect on endoreduplication. By contrast, ectopic expression of the defective enzyme lowered kinase activity and reduced by half the mean C-value and total DNA content of endosperm nuclei. The lower level of endoreduplication did not affect cell size and only slightly reduced starch and storage protein accumulation. There was little difference in the level of endosperm gene expression with high and low levels of endoreduplication, suggesting that this process may not enhance transcription of genes associated with starch and storage protein synthesis.


Developmental Dynamics | 2004

Reorganization of Specific Chromosomal Domains and Activation of Silent Genes in Plant Cells Acquiring Pluripotentiality

Yigal Avivi; Vered Morad; Hagit Ben-Meir; Jing Zhao; Khalil Kashkush; Tzvi Tzfira; Vitaly Citovsky; Gideon Grafi

The transition from leaf cells to protoplasts (plant cells devoid of cell walls) confers pluripotentiality coupled with chromatin reorganization. Here, we sought to identify remodeled chromosomal domains in Arabidopsis protoplasts by tracking DNA sequences undergoing changes in DNA methylation and by identifying up‐regulated genes. We observed a reduction in DNA methylation at a pericentromeric region of chromosome 1, and up‐regulation of several members of the NAC (NAM/ATAF1/CUC2) domain family, two of which are located near the telomeric region of chromosome 1. Fluorescence in situ hybridization (FISH) analysis demonstrated that both pericentromeric and telomeric subdomains underwent chromatin decondensation. This decondensation is subdomain‐specific inasmuch as centromeric repeats remained largely unchanged, whereas the 18S rDNA underwent condensation. Within the pericentromeric subdomain, VIP1, a gene encoding a b‐Zip nuclear protein required for Agrobacterium infectivity, was transcriptionally activated. Overexpression of this gene in tobacco resulted in growth retardation and inhibition of differentiation and shoot formation. Altogether, our data indicate that acquisition of pluripotentiality involves changes in DNA methylation pattern and reorganization of specific chromosomal subdomains. This change leads to activation of silent genes whose products are involved in acquisition or maintenance of pluripotentiality and/or the ensuing fate of the cell. Developmental Dynamics 230:12–22, 2004.


Applied Biochemistry and Biotechnology | 1994

Alliin lyase (alliinase) from garlic (Allium sativum) : biochemical characterization and cDNA cloning

Aharon Rabinkov; Xiao-Zhu Zhu; Gideon Grafi; Gad Galili; David Mirelman

The garlic plant (Allium sativum) alliinase (EC 4.4.1.4), which catalyzes the synthesis of allicin, was purified to homogeneity from bulbs using various steps, including hydrophobic chromatography. Molecular and biochemical studies showed that the enzyme is a dimer of two subunits of MW 51.5 kDa each. ItsKm using synthetic S-allylcysteine sulfoxide (+isomer) as substrate was 1.1 mM, its pH optimum 6.5, and its isoelectric point 6.35. The enzyme is a glycoprotein containing 6% carbohydrate. N-terminal sequences of the intact polypeptide chain as well as of a number of peptides obtained after cyanogen bromide cleavage were obtained. Cloning of the cDNAs encoding alliinase was performed by a two-step strategy. In the first, a cDNA fragment (pAli-1-450 bp) was obtained by PCR using a mixed oligonucleotide primer synthesized according to a 6-amino acid segment near theN- terminal of the intact polypeptide. The second step involved screening of garlic λgt11 and λZAPII cDNA libraries withpAli-1, which yielded two clones; one was nearly full length and the second was full length. These clones exhibited some degree of DNA sequence divergence, especially in their 3′ noncoding regions, suggesting that they were encoded by separate genes. The nearly full length cDNA was fused in frame to a DNA encoding a signal peptide from a wheat gliadin, and expressed inXenopus oocytes. This yielded a 50 kDa protein that interacted with the antibodies against natural bulb alliinase. Northern and Western blot analyses showed that the bulb alliinase was highly expressed in bulbs, whereas a lower expression level was found in leaves, and no expression was detected in roots. Strikingly, the roots exhibited an abundant alliinase activity, suggesting that this tissue expressed a distinct alliinase isozyme with very low homology to the bulb enzyme.


The Plant Cell | 2005

DDM1 Binds Arabidopsis Methyl-CpG Binding Domain Proteins and Affects Their Subnuclear Localization

Assaf Zemach; Yan Li; Bess Wayburn; Hagit Ben-Meir; Vladimir Kiss; Yigal Avivi; Vyacheslav Kalchenko; Steven E. Jacobsen; Gideon Grafi

Methyl-CpG binding domain (MBD) proteins in Arabidopsis thaliana bind in vitro methylated CpG sites. Here, we aimed to characterize the binding properties of AtMBDs to chromatin in Arabidopsis nuclei. By expressing in wild-type cells AtMBDs fused to green fluorescent protein (GFP), we showed that AtMBD7 was evenly distributed at all chromocenters, whereas AtMBD5 and 6 showed preference for two perinucleolar chromocenters adjacent to nucleolar organizing regions. AtMBD2, previously shown to be incapable of binding in vitro–methylated CpG, was dispersed within the nucleus, excluding chromocenters and the nucleolus. Recruitment of AtMBD5, 6, and 7 to chromocenters was disrupted in ddm1 and met1 mutant cells, where a significant reduction in cytosine methylation occurs. In these mutant cells, however, AtMBD2 accumulated at chromocenters. No effect on localization was observed in the chromomethylase3 mutant showing reduced CpNpG methylation or in kyp-2 displaying a reduction in Lys 9 histone H3 methylation. Transient expression of DDM1 fused to GFP showed that DDM1 shares common sites with AtMBD proteins. Glutathione S-transferase pull-down assays demonstrated that AtMBDs bind DDM1; the MBD motif was sufficient for this interaction. Our results suggest that the subnuclear localization of AtMBD is not solely dependent on CpG methylation; DDM1 may facilitate localization of AtMBDs at specific nuclear domains.


Developmental Dynamics | 2003

Chromatin reorganization accompanying cellular dedifferentiation is associated with modifications of histone H3, redistribution of HP1, and activation of E2F-target genes.

Leor Williams; Jing Zhao; Nadya Morozova; Yan Li; Yigal Avivi; Gideon Grafi

The remarkable regeneration capacity of plant cells is based on their capability to dedifferentiate. We recently reported that cellular dedifferentiation proceeds through two distinct phases, each accompanied by chromatin decondensation: acquisition of competence for fate switch followed by a signal‐dependent reentry into S phase (Zhao et al. [ 2001 ] J. Biol. Chem. 276:22772‐22778). The purpose of this study was to (1) characterize changes in chromatin factors associated with chromatin decondensation, and (2) study the relationship between chromatin decondensation and transcriptional activation of pRb/E2F‐regulated genes. We show that plant cells competent for fate switch display a disruption of nucleolar domain appearance associated with condensation of 18S ribosomal DNA, as well as modifications of histone H3 and redistribution of heterochromatin protein 1 (HP1). We further show that the pRb/E2F‐target genes RNR2 and PCNA are condensed and silent in differentiated leaf cells but become decondensed, although not yet activated, as cells acquire competence for fate switch; transcriptional activation becomes evident during progression into S phase, concomitantly with pRb phosphorylation. We propose that chromatin reorganization is central for reversion of the differentiation process leading to resetting of the gene expression program and activation of silent genes. Developmental Dynamics 228:113–120, 2003.


Planta | 2011

Plant response to stress meets dedifferentiation.

Gideon Grafi; Vered Chalifa-Caspi; Tal Nagar; Inbar Plaschkes; Simon Barak; Vanessa Ransbotyn

Plant response to various stress conditions often results in expression of common genes, known as stress-responsive/inducible genes. Accumulating data point to a common, yet elusive process underlying the response of plant cells to stress. Evidence derived from transcriptome profiling of shoot apical meristem stem cells, dedifferentiating protoplast cells as well as from senescing cells lends support to a model in which a common response of cells to certain biotic and abiotic stresses converges on cellular dedifferentiation whereby cells first acquire a stem cell-like state before assuming a new fate.


The Plant Cell | 2006

Different Domains Control the Localization and Mobility of LIKE HETEROCHROMATIN PROTEIN1 in Arabidopsis Nuclei

Assaf Zemach; Yan Li; Hagit Ben-Meir; Moran Oliva; Assaf Mosquna; Vladimir Kiss; Yigal Avivi; Nir Ohad; Gideon Grafi

Plants possess a single gene for the structurally related HETEROCHROMATIN PROTEIN1 (HP1), termed LIKE-HP1 (LHP1). We investigated the subnuclear localization, binding properties, and dynamics of LHP1 proteins in Arabidopsis thaliana cells. Transient expression assays showed that tomato (Solanum lycopersicum) LHP1 fused to green fluorescent protein (GFP; Sl LHP1-GFP) and Arabidopsis LHP1 (At LHP1-GFP) localized to heterochromatic chromocenters and showed punctuated distribution within the nucleus; tomato but not Arabidopsis LHP1 was also localized within the nucleolus. Mutations of aromatic cage residues that recognize methyl K9 of histone H3 abolished their punctuated distribution and localization to chromocenters. Sl LHP1-GFP plants displayed cell type–dependent subnuclear localization. The diverse localization pattern of tomato LHP1 did not require the chromo shadow domain (CSD), whereas the chromodomain alone was insufficient for localization to chromocenters; a nucleolar localization signal was identified within the hinge region. Fluorescence recovery after photobleaching showed that Sl LHP1 is a highly mobile protein whose localization and retention are controlled by distinct domains; retention at the nucleolus and chromocenters is conferred by the CSD. Our results imply that LHP1 recruitment to chromatin is mediated, at least in part, through interaction with methyl K9 and that LHP1 controls different nuclear processes via transient binding to its nuclear sites.


Molecular Genetics and Genomics | 2004

Interaction of FIE, a polycomb protein, with pRb: a possible mechanism regulating endosperm development.

Assaf Mosquna; Aviva Katz; S. Shochat; Gideon Grafi; Nir Ohad

AbstractInactivation of the Arabidopsis protein FERTILIZATION INDEPENDENT ENDOSPERM (FIE) induces division of the central cell of the embryo sac, leading to endosperm development in the absence of fertilization. The mechanism whereby FIE regulates this process is unknown. We postulated that activation of central cell division in fie mutant plants might involve the retinoblastoma protein (pRb), a cell cycle regulatory element. Pull-down and surface plasmon resonance assays demonstrated that FIE interacts in-vitro with the pRb homologues from Arabidopsis (AtRb), maize (ZmRb) and human (HuRb). The interaction of FIE with ZmRB and HuRb in the yeast two-hybrid system supports the possibility that a FIE-pRb interaction may occur also in planta. Mutational analysis showed that this interaction does not occur via the LxCxE motif of the FIE protein nor via the pocket B domain of pRb. These results suggest that FIE may inhibit premature division of the central cell of the embryo sac, at least partly, through interaction with pRb, and suppression of pRb-regulated genes.


Frontiers in Plant Science | 2011

The Stem Cell State in Plant Development and in Response to Stress

Gideon Grafi; Assa Florentin; Vanessa Ransbotyn; Yakov Morgenstern

Stem cells are commonly defined by their developmental capabilities, namely, self-renewal and multitype differentiation, yet the biology of stem cells and their inherent features both in plants and animals are only beginning to be elucidated. In this review article we highlight the stem cell state in plants with reference to animals and the plastic nature of plant somatic cells often referred to as totipotency as well as the essence of cellular dedifferentiation. Based on recent published data, we illustrate the picture of stem cells with emphasis on their open chromatin conformation. We discuss the process of dedifferentiation and highlight its transient nature, its distinction from re-entry into the cell cycle and its activation following exposure to stress. We also discuss the potential hazard that can be brought about by stress-induced dedifferentiation and its major impact on the genome, which can undergo stochastic, abnormal reorganization leading to genetic variation by means of DNA transposition and/or DNA recombination.


Rejuvenation Research | 2009

Senescing Cells Share Common Features with Dedifferentiating Cells

Meytal Damri; Gila Granot; Hagit Ben-Meir; Yigal Avivi; Inbar Plaschkes; Vered Chalifa-Caspi; Marina Wolfson; Vadim E. Fraifeld; Gideon Grafi

Dedifferentiation signifies the capacity of somatic cells to acquire stem cell-like properties. This process can be induced during normal development and as a response to various stimuli, such as pathogen infection and wounding. Dedifferentiation also characterizes the transition of differentiated leaf cells into protoplasts (plant cells devoid of cell walls), a transition accompanied by widespread chromatin decondensation. Transcriptome profiling of dedifferentiating protoplast cells revealed striking similarities with senescing cells; both display a large increase in the expression of genes of specific transcription factor (TF) families, including ANAC, WRKY, bZIP, and C2H2. Further analysis showed that leaves induced to senesce by exposure to dark display characteristic features of dedifferentiating cells, including chromatin decondensation, disruption of the nucleolus, and condensation of rRNA genes. Considering that premature senescence can be induced by various stress conditions both in plant and animal cells, our results suggest that the response of plant and also animal cells to certain stresses converges on cellular dedifferentiation whereby cells first acquire stem cell-like state prior to acquisition of a new cell fate (e.g., reentry into the cell cycle or death).

Collaboration


Dive into the Gideon Grafi's collaboration.

Top Co-Authors

Avatar

Assaf Zemach

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Yigal Avivi

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Gila Granot

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Jing Zhao

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Hagit Ben-Meir

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Leor Williams

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Narendra Singh Yadav

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Simon Barak

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Yan Li

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Asif Khan

Ben-Gurion University of the Negev

View shared research outputs
Researchain Logo
Decentralizing Knowledge