Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Astrid M. Roy-Engel is active.

Publication


Featured researches published by Astrid M. Roy-Engel.


Nucleic Acids Research | 2010

Somatic expression of LINE-1 elements in human tissues

Victoria P. Belancio; Astrid M. Roy-Engel; Radhika Pochampally; Prescott L. Deininger

LINE-1 expression damages host DNA via insertions and endonuclease-dependent DNA double-strand breaks (DSBs) that are highly toxic and mutagenic. The predominant tissue of LINE-1 expression has been considered to be the germ line. We show that both full-length and processed L1 transcripts are widespread in human somatic tissues and transformed cells, with significant variation in both L1 expression and L1 mRNA processing. This is the first demonstration that RNA processing is a major regulator of L1 activity. Many tissues also produce translatable spliced transcript (SpORF2). An Alu retrotransposition assay, COMET assays and 53BP1 foci staining show that the SpORF2 product can support functional ORF2 protein expression and can induce DNA damage in normal cells. Tests of the senescence-associated β-galactosidase expression suggest that expression of exogenous full-length L1, or the SpORF2 mRNA alone in human fibroblasts and adult stem cells triggers a senescence-like phenotype, which is one of the reported responses to DNA damage. In contrast to previous assumptions that L1 expression is germ line specific, the increased spectrum of tissues exposed to L1-associated damage suggests a role for L1 as an endogenous mutagen in somatic tissues. These findings have potential consequences for the whole organism in the form of cancer and mammalian aging.


Genome Medicine | 2009

LINE dancing in the human genome: transposable elements and disease

Victoria P. Belancio; Prescott L. Deininger; Astrid M. Roy-Engel

Transposable elements (TEs) have been consistently underestimated in their contribution to genetic instability and human disease. TEs can cause human disease by creating insertional mutations in genes, and also contributing to genetic instability through non-allelic homologous recombination and introduction of sequences that evolve into various cis-acting signals that alter gene expression. Other outcomes of TE activity, such as their potential to cause DNA double-strand breaks or to modulate the epigenetic state of chromosomes, are less fully characterized. The currently active human transposable elements are members of the non-LTR retroelement families, LINE-1, Alu (SINE), and SVA. The impact of germline insertional mutagenesis by TEs is well established, whereas the rate of post-insertional TE-mediated germline mutations and all forms of somatic mutations remain less well quantified. The number of human diseases discovered to be associated with non-allelic homologous recombination between TEs, and particularly between Alu elements, is growing at an unprecedented rate. Improvement in the technology for detection of such events, as well as the mounting interest in the research and medical communities in resolving the underlying causes of the human diseases with unknown etiology, explain this increase. Here, we focus on the most recent advances in understanding of the impact of the active human TEs on the stability of the human genome and its relevance to human disease.


DNA Repair | 2008

ERCC1/XPF limits L1 retrotransposition

Stephen L. Gasior; Astrid M. Roy-Engel; Prescott L. Deininger

Retrotransposons are currently active in the human and mouse genomes contributing to novel disease mutations and genomic variation via de novo insertions. However, little is known about the interactions of non-long terminal repeat (non-LTR) retrotransposons with the host DNA repair machinery. Based on the model of retrotransposition for the human and mouse LINE-1 element, one likely intermediate is an extension of cDNA that is heterologous to the genomic target, a flap intermediate. To determine whether a human flap endonuclease could recognize and process this potential intermediate, the genetic requirement for the ERCC1/XPF heterodimer during LINE-1 retrotransposition was characterized. Reduction of XPF in human cells increased retrotransposition whereas complementation of ERCC1-deficiency in hamster cells reduced retrotransposition. These results demonstrate for the first time that DNA repair enzymes act to limit non-LTR retrotransposition and may provide insight into the genetic instability phenotypes of ercc1 and xpf individuals.


Gene | 2008

The impact of multiple splice sites in human L1 elements

Victoria P. Belancio; Astrid M. Roy-Engel; Prescott L. Deininger

LINE-1 elements represent a significant proportion of mammalian genomes. The impact of their activity on the structure and function of the host genomes has been recognized from the time of their discovery as an endogenous source of insertional mutagenesis. L1 elements contain numerous functional internal polyadenylation signals and splice sites that generate a variety of processed L1 transcripts. These sites are also reported to contribute to the generation of hybrid transcripts between L1 elements and host genes. Using northern blot analysis we demonstrate that L1 splicing, but not L1 polyadenylation, is delayed during the course of L1 expression. L1 splicing can also be negatively regulated by EBV SM protein known to alter this process. These results suggest a potential for L1 mRNA processing to be regulated in a tissue- and/or development-specific manner. The delay in L1 splicing may also serve to protect host genes from the excessive burden of L1 interference with their normal expression via aberrant splicing.


Gene | 2008

LINE-1 ORF1 protein enhances Alu SINE retrotransposition

Nicholas Wallace; Bradley J. Wagstaff; Prescott L. Deininger; Astrid M. Roy-Engel

Retroelements have contributed over one third of the human genome mass. The currently active LINE-1 (L1) codes for two proteins (ORF1p and ORF2p), both strictly required for retrotransposition. In contrast, the non-coding parasitic SINE (Alu) only appears to need the L1 ORF2p for its own amplification. This requirement was previously determined using a tissue culture assay system in human cells (HeLa). Because HeLa are likely to express functional L1 proteins, it is possible that low levels of endogenous ORF1p are necessary for the observed tagged Alu mobilization. By individually expressing ORF1 and ORF2 proteins from both human (L1RP and LRE3) and rodent (L1A102 and L1spa) L1 sources, we demonstrate that increasing amounts of ORF1 expressing vector enhances tagged Alu mobilization in HeLa cells. In addition, using chicken fibroblast cells as an alternate cell culture source, we confirmed that ORF1p is not strictly required for Alu mobilization in our assay. Supporting our observations in HeLa cells, we find that tagged Alu retrotransposition is improved by supplementation of ORF1p in the cultured chicken cells. We postulate that L1 ORF1p plays either a direct or indirect role in enhancing the interaction between the Alu RNA and the required factors needed for its retrotransposition.


PLOS Genetics | 2009

The RNA polymerase dictates ORF1 requirement and timing of LINE and SINE retrotransposition.

Emily N. Kroutter; Victoria P. Belancio; Bradley J. Wagstaff; Astrid M. Roy-Engel

Mobile elements comprise close to one half of the mass of the human genome. Only LINE-1 (L1), an autonomous non-Long Terminal Repeat (LTR) retrotransposon, and its non-autonomous partners—such as the retropseudogenes, SVA, and the SINE, Alu—are currently active human retroelements. Experimental evidence shows that Alu retrotransposition depends on L1 ORF2 protein, which has led to the presumption that LINEs and SINEs share the same basic insertional mechanism. Our data demonstrate clear differences in the time required to generate insertions between marked Alu and L1 elements. In our tissue culture system, the process of L1 insertion requires close to 48 hours. In contrast to the RNA pol II-driven L1, we find that pol III transcribed elements (Alu, the rodent SINE B2, and the 7SL, U6 and hY sequences) can generate inserts within 24 hours or less. Our analyses demonstrate that the observed retrotransposition timing does not dictate insertion rate and is independent of the type of reporter cassette utilized. The additional time requirement by L1 cannot be directly attributed to differences in transcription, transcript length, splicing processes, ORF2 protein production, or the ability of functional ORF2p to reach the nucleus. However, the insertion rate of a marked Alu transcript drastically drops when driven by an RNA pol II promoter (CMV) and the retrotransposition timing parallels that of L1. Furthermore, the “pol II Alu transcript” behaves like the processed pseudogenes in our retrotransposition assay, requiring supplementation with L1 ORF1p in addition to ORF2p. We postulate that the observed differences in retrotransposition kinetics of these elements are dictated by the type of RNA polymerase generating the transcript. We present a model that highlights the critical differences of LINE and SINE transcripts that likely define their retrotransposition timing.


Journal of Molecular Biology | 2002

Shared protein components of SINE RNPs.

Neva C West; Astrid M. Roy-Engel; Hiroaki Imataka; Nahum Sonenberg; Prescott L. Deininger

The heterogeneous, short RNAs produced from the high, copy, short mobile elements (SINEs) interact with proteins to form RNA-protein (RNP) complexes. In particular, the BC1 RNA, which is transcribed to high levels specifically in brain and testis from one locus of the ID SINE family, exists as a discrete RNP complex. We expressed a series of altered BC1, and other SINE-related RNAs, in several cell lines and tested for the mobility of the resulting RNP complexes in a native PAGE assay to determine which portions of these SINE RNAs contribute to protein binding. When different SINE RNAs were substituted for the BC1 ID sequence, the resulting RNPs exhibited the same mobility as BC1. This indicates that the protein(s) binding to the ID portion of BC1 is not sequence specific and may be more dependent upon the secondary structure of the RNA. It also suggests that all SINE RNAs may bind a similar set of cellular proteins. Deletion of the A-rich region of BC1 RNA has a marked effect on the mobility of the RNP. Rodent cell lines exhibit a slightly different mobility for this shifted complex when compared to human cell lines, reflecting evolutionary differences in one or more of the protein components. On the basis of mobility change observed in RNP complexes when the A-rich region is removed, we decided to examine poly(A) binding protein (PABP) as a candidate member of the RNP. An antibody against the C terminus of PABP is able to immunoprecipitate BC1 RNA, confirming PABPs presence in the BC1 RNP. Given the ubiquitous role of poly(A) regions in the retrotransposition process, these data suggest that PABP may contribute to the SINE retrotransposition process.


Cytogenetic and Genome Research | 2005

Human retroelements may introduce intragenic polyadenylation signals.

Astrid M. Roy-Engel; M. El-Sawy; L. Farooq; G.L. Odom; V. Perepelitsa-Belancio; H. Bruch; O.O. Oyeniran; Prescott L. Deininger

In the human genome, the insertion of LINE-1 and Alu elements can affect genes by sequence disruption, and by the introduction of elements that modulate the gene’s expression. One of the modulating sequences retroelements may contribute is the canonical polyadenylation signal (pA), AATAAA. L1 elements include these within their own sequence and AATAAA sequences are commonly created in the A-rich tails of both SINEs and LINEs. Computational analysis of 34 genes randomly retrieved from the human genome draft sequence reveals an orientation bias, reflected as a lower number of L1s and Alus containing the pA in the same orientation as the gene. Experimental studies of Alu-based pA sequences when placed in pol II or pol III transcripts suggest that the signal is very weak, or often not used at all. Because the pA signal is highly affected by the surrounding sequence, it is likely that the Alu constructs evaluated did not provide the required recognition signals to the polyadenylation machinery. Although the effect of pA signals contributed by Alus is individually weak, the observed reduction of “sense” oriented pA-containing L1 and Alu elements within genes reflects that even a modest influence causes a change in evolutionary pressure, sufficient to create the biased distribution.


Current Opinion in Virology | 2013

Alu elements: An intrinsic source of human genome instability

Catherine M. Ade; Astrid M. Roy-Engel; Prescott L. Deininger

Alu elements are ∼300bp sequences that have amplified via an RNA intermediate leading to the accumulation of over 1 million copies in the human genome. Although a few of the copies are active, Alu germline activity is the highest of all human retrotransposons and does significantly contribute to genetic disease and population diversity. There are two basic mechanisms by which Alu elements contribute to disease: through insertional mutagenesis and as a large source of repetitive sequences that contribute to nonallelic homologous recombination (NAHR) that cause genetic deletions and duplications.


Journal of Molecular Evolution | 2003

Potential for Retroposition by Old Alu Subfamilies

Karla Johanning; Claudina Alemán Stevenson; Oluwatosin O. Oyeniran; Yair M. Gozal; Astrid M. Roy-Engel; Jerzy Jurka; Prescott L. Deininger

Alu elements sharing sequence characteristics of the “old” subfamilies are thought to currently be retrotranspositionally inactive. We analyzed one of these old subfamilies of Alu elements, Sx, for sequence conservation relative to the consensus and the length of the “A-tail” as parameters to define the presence of potential Alu Sx source genes in the human genome. Sequence identity to the left half or the right half of the Alu Sx consensus sequence was evaluated for 4424 complete elements obtained from the human genome draft sequence. A small subset of Alu Sx left halves were found to be more conserved than any of the Alu Sx right halves. Selection for promoter function in active elements may explain the slightly higher conservation of the left half. In order to determine whether this sequence identity was the result of recent activity, or simply sequence conservation for older elements, PCR amplification of some of the loci containing Sx elements with conserved left/right halves from different primate genomes was carried out. Several of these Sx Alus were found to have amplified at a later evolutionary period (<35 mya) than expected based on previous studies of Sx elements. Analysis of “A-tail” length, a feature correlated with current retroposition activity, varied between Alu Sx element loci in different primates, where the length increased in specific Alu elements in the human genome. The presence of few conserved Alu Sx elements and the dynamic expansion/contraction of the A-tail suggests that some of these older subfamilies may still be active at very low levels or in a few individuals.

Collaboration


Dive into the Astrid M. Roy-Engel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Batzer

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge