Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dale J. Hedges is active.

Publication


Featured researches published by Dale J. Hedges.


Nature Reviews Cardiology | 2013

Dilated cardiomyopathy: the complexity of a diverse genetic architecture

Ray E. Hershberger; Dale J. Hedges; Ana Morales

Remarkable progress has been made in understanding the genetic basis of dilated cardiomyopathy (DCM). Rare variants in >30 genes, some also involved in other cardiomyopathies, muscular dystrophy, or syndromic disease, perturb a diverse set of important myocardial proteins to produce a final DCM phenotype. Large, publicly available datasets have provided the opportunity to evaluate previously identified DCM-causing mutations, and to examine the population frequency of sequence variants similar to those that have been observed to cause DCM. The frequency of these variants, whether associated with dilated or hypertrophic cardiomyopathy, is greater than estimates of disease prevalence. This mismatch might be explained by one or more of the following possibilities: that the penetrance of DCM-causing mutations is lower than previously thought, that some variants are noncausal, that DCM prevalence is higher than previously estimated, or that other more-complex genomics underlie DCM. Reassessment of our assumptions about the complexity of the genomic and phenomic architecture of DCM is warranted. Much about the genomic basis of DCM remains to be investigated, which will require comprehensive genomic studies in much larger cohorts of rigorously phenotyped probands and family members than previously examined.


Annals of Human Genetics | 2009

A Genome-wide Association Study of Autism Reveals a Common Novel Risk Locus at 5p14.1

Deqiong Ma; Daria Salyakina; James M. Jaworski; Ioanna Konidari; Ashley Andersen; Joshua Hoffman; Susan Slifer; Dale J. Hedges; Holly N. Cukier; Anthony J. Griswold; Jacob L. McCauley; Gary W. Beecham; Harry H. Wright; Ruth K. Abramson; Eden R. Martin; John P. Hussman; John R. Gilbert; Michael L. Cuccaro; Jonathan L. Haines; Margaret A. Pericak-Vance

Although autism is one of the most heritable neuropsychiatric disorders, its underlying genetic architecture has largely eluded description. To comprehensively examine the hypothesis that common variation is important in autism, we performed a genome‐wide association study (GWAS) using a discovery dataset of 438 autistic Caucasian families and the Illumina Human 1M beadchip. 96 single nucleotide polymorphisms (SNPs) demonstrated strong association with autism risk (p‐value < 0.0001). The validation of the top 96 SNPs was performed using an independent dataset of 487 Caucasian autism families genotyped on the 550K Illumina BeadChip. A novel region on chromosome 5p14.1 showed significance in both the discovery and validation datasets. Joint analysis of all SNPs in this region identified 8 SNPs having improved p‐values (3.24E‐04 to 3.40E‐06) than in either dataset alone. Our findings demonstrate that in addition to multiple rare variations, part of the complex genetic architecture of autism involves common variation.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Alu elements and hominid phylogenetics

Abdel Halim Salem; David A. Ray; Jinchuan Xing; Pauline A. Callinan; Jeremy S. Myers; Dale J. Hedges; Randall K. Garber; David J. Witherspoon; Lynn B. Jorde; Mark A. Batzer

Alu elements have inserted in primate genomes throughout the evolution of the order. One particular Alu lineage (Ye) began amplifying relatively early in hominid evolution and continued propagating at a low level as many of its members are found in a variety of hominid genomes. This study represents the first conclusive application of short interspersed elements, which are considered nearly homoplasy-free, to elucidate the phylogeny of hominids. Phylogenetic analysis of Alu Ye5 elements and elements from several other subfamilies reveals high levels of support for monophyly of Hominidae, tribe Hominini and subtribe Hominina. Here we present the strongest evidence reported to date for a sister relationship between humans and chimpanzees while clearly distinguishing the chimpanzee and human lineages.


Nucleic Acids Research | 2006

LINE-1 RNA splicing and influences on mammalian gene expression

Victoria P. Belancio; Dale J. Hedges; Prescott L. Deininger

Long interspersed element-1 elements compose on average one-fifth of mammalian genomes. The expression and retrotransposition of L1 is restricted by a number of cellular mechanisms in order to limit their damage in both germ-line and somatic cells. L1 transcription is largely suppressed in most tissues, but L1 mRNA and/or proteins are still detectable in testes, a number of specific somatic cell types, and malignancies. Down-regulation of L1 expression via premature polyadenylation has been found to be a secondary mechanism of limiting L1 expression. We demonstrate that mammalian L1 elements contain numerous functional splice donor and acceptor sites. Efficient usage of some of these sites results in extensive and complex splicing of L1. Several splice variants of both the human and mouse L1 elements undergo retrotransposition. Some of the spliced L1 mRNAs can potentially contribute to expression ofopen reading frame 2-related products and therefore have implications for the mobility of SINEs even if they are incompetent for L1 retrotransposition. Analysis of the human EST database revealed that L1 elements also participate in splicing events with other genes. Such contribution of functional splice sites by L1 may result in disruption of normal gene expression or formation of alternative mRNA transcripts.


PLOS Genetics | 2013

Reconstructing the population genetic history of the Caribbean.

Andres Moreno-Estrada; Simon Gravel; Fouad Zakharia; Jacob L. McCauley; Jake K. Byrnes; Christopher R. Gignoux; Patricia Ortiz-Tello; Ricardo Martinez; Dale J. Hedges; Richard Morris; Celeste Eng; Karla Sandoval; Suehelay Acevedo-Acevedo; Paul J. Norman; Zulay Layrisse; Peter Parham; Juan Carlos Martínez-Cruzado; Esteban G. Burchard; Michael L. Cuccaro; Eden R. Martin; Carlos Bustamante

The Caribbean basin is home to some of the most complex interactions in recent history among previously diverged human populations. Here, we investigate the population genetic history of this region by characterizing patterns of genome-wide variation among 330 individuals from three of the Greater Antilles (Cuba, Puerto Rico, Hispaniola), two mainland (Honduras, Colombia), and three Native South American (Yukpa, Bari, and Warao) populations. We combine these data with a unique database of genomic variation in over 3,000 individuals from diverse European, African, and Native American populations. We use local ancestry inference and tract length distributions to test different demographic scenarios for the pre- and post-colonial history of the region. We develop a novel ancestry-specific PCA (ASPCA) method to reconstruct the sub-continental origin of Native American, European, and African haplotypes from admixed genomes. We find that the most likely source of the indigenous ancestry in Caribbean islanders is a Native South American component shared among inland Amazonian tribes, Central America, and the Yucatan peninsula, suggesting extensive gene flow across the Caribbean in pre-Columbian times. We find evidence of two pulses of African migration. The first pulse—which today is reflected by shorter, older ancestry tracts—consists of a genetic component more similar to coastal West African regions involved in early stages of the trans-Atlantic slave trade. The second pulse—reflected by longer, younger tracts—is more similar to present-day West-Central African populations, supporting historical records of later transatlantic deportation. Surprisingly, we also identify a Latino-specific European component that has significantly diverged from its parental Iberian source populations, presumably as a result of small European founder population size. We demonstrate that the ancestral components in admixed genomes can be traced back to distinct sub-continental source populations with far greater resolution than previously thought, even when limited pre-Columbian Caribbean haplotypes have survived.


PLOS ONE | 2009

Exome sequencing of a multigenerational human pedigree.

Dale J. Hedges; Dan Burges; Eric Powell; Cherylyn Almonte; Jia-Jia Huang; Stuart Young; Benjamin Boese; Mike Schmidt; Margaret A. Pericak-Vance; Eden R. Martin; Xinmin Zhang; Timothy T. Harkins; Stephan Züchner

Over the next few years, the efficient use of next-generation sequencing (NGS) in human genetics research will depend heavily upon the effective mechanisms for the selective enrichment of genomic regions of interest. Recently, comprehensive exome capture arrays have become available for targeting approximately 33 Mb or ∼180,000 coding exons across the human genome. Selective genomic enrichment of the human exome offers an attractive option for new experimental designs aiming to quickly identify potential disease-associated genetic variants, especially in family-based studies. We have evaluated a 2.1 M feature human exome capture array on eight individuals from a three-generation family pedigree. We were able to cover up to 98% of the targeted bases at a long-read sequence read depth of ≥3, 86% at a read depth of ≥10, and over 50% of all targets were covered with ≥20 reads. We identified up to 14,284 SNPs and small indels per individual exome, with up to 1,679 of these representing putative novel polymorphisms. Applying the conservative genotype calling approach HCDiff, the average rate of detection of a variant allele based on Illumina 1 M BeadChips genotypes was 95.2% at ≥10x sequence. Further, we propose an advantageous genotype calling strategy for low covered targets that empirically determines cut-off thresholds at a given coverage depth based on existing genotype data. Application of this method was able to detect >99% of SNPs covered ≥8x. Our results offer guidance for “real-world” applications in human genetics and provide further evidence that microarray-based exome capture is an efficient and reliable method to enrich for chromosomal regions of interest in next-generation sequencing experiments.


Journal of Virology | 2013

Whole-Genome Sequencing of the Akata and Mutu Epstein-Barr Virus Strains

Zhen Lin; Xia Wang; Michael J. Strong; Monica Concha; Melody Baddoo; Guorong Xu; Carl Baribault; Claire Fewell; William Hulme; Dale J. Hedges; Christopher M. Taylor; Erik K. Flemington

ABSTRACT Using a simple viral genome enrichment approach, we report the de novo assembly of the Akata and Mutu Epstein-Barr virus (EBV) genomes from a single lane of next-generation sequencing (NGS) reads. The Akata and Mutu viral genomes are type I EBV strains of approximately 171 kb in length. Evidence for genome heterogeneity was found for the Akata but not for the Mutu strain. A comparative analysis of Akata with another four completely sequenced EBV strains, B95-8/Raji, AG876, Mutu, and GD1, demonstrated that the Akata strain is most closely related to the GD1 strain and exhibits the greatest divergence from the type II strain, AG876. A global comparison of latent and lytic gene sequences showed that the four latency genes, EBNA2, EBNA3A, EBNA3B, and EBNA3C, are uniquely defining of type I and type II strain differences. Within type I strains, LMP1, the latency gene, is among the most divergent of all EBV genes, with three insertion or deletion loci in its CTAR2 and CTAR3 signaling domains. Analysis of the BHLF1 and LF3 genes showed that the reading frames identified in the B95-8/Raji genome are not conserved in Akata (or Mutu, for BHLF1), suggesting a primarily non-protein-coding function in EBVs life cycle. The Akata and Mutu viral-genome sequences should be a useful resource for homology-based functional prediction and for molecular studies, such as PCR, RNA-seq, recombineering, and transcriptome studies. As an illustration, we identified novel RNA-editing events in ebv-miR-BART6 antisense transcripts using the Akata and Mutu reference genomes.


Circulation-cardiovascular Genetics | 2013

Exome sequencing and genome-wide linkage analysis in 17 families illustrate the complex contribution of TTN truncating variants to dilated cardiomyopathy.

Nadine Norton; Duanxiang Li; Evadnie Rampersaud; Ana Morales; Eden R. Martin; Stephan Züchner; Shengru Guo; Michael Gonzalez; Dale J. Hedges; Peggy D. Robertson; Niklas Krumm; Deborah A. Nickerson; Ray E. Hershberger

Background—Familial dilated cardiomyopathy (DCM) is a genetically heterogeneous disease with >30 known genes. TTN truncating variants were recently implicated in a candidate gene study to cause 25% of familial and 18% of sporadic DCM cases. Methods and Results—We used an unbiased genome-wide approach using both linkage analysis and variant filtering across the exome sequences of 48 individuals affected with DCM from 17 families to identify genetic cause. Linkage analysis ranked the TTN region as falling under the second highest genome-wide multipoint linkage peak, multipoint logarithm of odds, 1.59. We identified 6 TTN truncating variants carried by individuals affected with DCM in 7 of 17 DCM families (logarithm of odds, 2.99); 2 of these 7 families also had novel missense variants that segregated with disease. Two additional novel truncating TTN variants did not segregate with DCM. Nucleotide diversity at the TTN locus, including missense variants, was comparable with 5 other known DCM genes. The average number of missense variants in the exome sequences from the DCM cases or the ≈5400 cases from the Exome Sequencing Project was ≈23 per individual. The average number of TTN truncating variants in the Exome Sequencing Project was 0.014 per individual. We also identified a region (chr9q21.11-q22.31) with no known DCM genes with a maximum heterogeneity logarithm of odds score of 1.74. Conclusions—These data suggest that TTN truncating variants contribute to DCM cause. However, the lack of segregation of all identified TTN truncating variants illustrates the challenge of determining variant pathogenicity even with full exome sequencing.


BMC Genomics | 2009

Alu repeats increase local recombination rates

David J. Witherspoon; W. Scott Watkins; Yuhua Zhang; Jinchuan Xing; Whitney L. Tolpinrud; Dale J. Hedges; Mark A. Batzer; Lynn B. Jorde

BackgroundRecombination rates vary widely across the human genome, but little of that variation is correlated with known DNA sequence features. The genome contains more than one million Alu mobile element insertions, and these insertions have been implicated in non-homologous recombination, modulation of DNA methylation, and transcriptional regulation. If individual Alu insertions have even modest effects on local recombination rates, they could collectively have a significant impact on the pattern of linkage disequilibrium in the human genome and on the evolution of the Alu family itself.ResultsWe carried out sequencing, SNP identification, and SNP genotyping around 19 AluY insertion loci in 347 individuals sampled from diverse populations, then used the SNP genotypes to estimate local recombination rates around the AluY loci. The loci and SNPs were chosen so as to minimize other factors (such as SNP ascertainment bias and SNP density) that could influence recombination rate estimates. We detected a significant increase in recombination rate within ~2 kb of the AluY insertions in our African population sample. To test this observation against a larger set of AluY insertions, we applied our locus- and SNP-selection design and analyses to the HapMap Phase II data. In that data set, we observed a significantly increased recombination rate near AluY insertions in both the CEU and YRI populations.ConclusionWe show that the presence of a fixed AluY insertion is significantly predictive of an elevated local recombination rate within 2 kb of the insertion, independent of other known predictors. The magnitude of this effect, approximately a 6% increase, is comparable to the effects of some recombinogenic DNA sequence motifs identified via their association with recombination hot spots.


Human Mutation | 2009

Rare mutations of FGFR2 causing apert syndrome: identification of the first partial gene deletion, and an Alu element insertion from a new subfamily.

Elena G. Bochukova; Tony Roscioli; Dale J. Hedges; Indira B. Taylor; David Johnson; David J. David; Prescott L. Deininger; Andrew O.M. Wilkie

Apert syndrome (AS) is a severe disorder, characterized by craniosynostosis and complex syndactyly of the hands and feet. Two heterozygous gain‐of‐function substitutions (Ser252Trp and Pro253Arg) in exon IIIa of fibroblast growth factor receptor 2 (FGFR2) are responsible for >98% of cases. Here we describe two novel mutations in FGFR2 in the two patients in whom a mutation had not previously been found in our cohort of 227 AS cases. The first is a 1.93‐kb deletion, removing exon IIIc and substantial portions of the flanking introns. This is the first large FGFR2 deletion described in any individual with craniosynostosis. The other mutation is a 5′ truncated Alu insertion into exon IIIc. This is the third Alu insertion identified in AS; all have occurred within an interval of only 104 bp, representing an enrichment of over a million‐fold compared to the background genomic rate. We show that the inserted Alu element belongs to a small subfamily, not previously known to be mobile, which we term Alu Yk13. Both the deletion and insertion are likely to act by a similar gain‐of‐function mechanism in which disruption of exon IIIc leads to illegitimate mesenchymal expression of an FGFR2 spliceform containing the alternatively spliced exon IIIb. All the AS‐associated Alu insertions have arisen in the paternal germline; we propose that their enrichment in FGFR2 is driven by positive selection of the mutant spermatogonial progenitors, a mechanism analogous to that explaining why the canonical AS nucleotide substitutions also reach exceptionally high levels in sperm. Hum Mutat 30, 204–211, 2009.

Collaboration


Dive into the Dale J. Hedges's collaboration.

Top Co-Authors

Avatar

Mark A. Batzer

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerilyn A. Walker

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Randall K. Garber

Louisiana State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge