Athanasios Typas
European Bioinformatics Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Athanasios Typas.
Nature Reviews Microbiology | 2012
Athanasios Typas; Manuel Banzhaf; Carol A. Gross; Waldemar Vollmer
How bacteria grow and divide while retaining a defined shape is a fundamental question in microbiology, but technological advances are now driving a new understanding of how the shape-maintaining bacterial peptidoglycan sacculus grows. In this Review, we highlight the relationship between peptidoglycan synthesis complexes and cytoskeletal elements, as well as recent evidence that peptidoglycan growth is regulated from outside the sacculus in Gram-negative bacteria. We also discuss how growth of the sacculus is sensitive to mechanical force and nutritional status, and describe the roles of peptidoglycan hydrolases in generating cell shape and of D-amino acids in sacculus remodelling.
Cell | 2011
Robert J. Nichols; Saunak Sen; Yoe Jin Choo; Pedro Beltrao; Matylda Zietek; Rachna Chaba; Sueyoung Lee; Krystyna M. Kazmierczak; Karis J. Lee; Angela Wong; Michael Shales; Susan T. Lovett; Malcolm E. Winkler; Nevan J. Krogan; Athanasios Typas; Carol A. Gross
The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth profiles of a mutant library in hundreds of conditions in parallel yielded > 10,000 phenotypes that allowed us to study gene essentiality, discover leads for gene function and drug action, and understand higher-order organization of the bacterial chromosome. We highlight new information derived from the study, including insights into a gene involved in multiple antibiotic resistance and the synergy between a broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This data set, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological and bioinformatic communities, as it provides high-confidence associations between hundreds of annotated and uncharacterized genes as well as inferences about the mode of action of several poorly understood drugs.
Cell | 2011
Eugene Oh; Annemarie H. Becker; Arzu Sandikci; Damon Huber; Rachna Chaba; Felix Gloge; Robert J. Nichols; Athanasios Typas; Carol A. Gross; Günter Kramer; Jonathan S. Weissman; Bernd Bukau
As nascent polypeptides exit ribosomes, they are engaged by a series of processing, targeting, and folding factors. Here, we present a selective ribosome profiling strategy that enables global monitoring of when these factors engage polypeptides in the complex cellular environment. Studies of the Escherichia coli chaperone trigger factor (TF) reveal that, though TF can interact with many polypeptides, β-barrel outer-membrane proteins are the most prominent substrates. Loss of TF leads to broad outer-membrane defects and premature, cotranslational protein translocation. Whereas in vitro studies suggested that TF is prebound to ribosomes waiting for polypeptides to emerge from the exit channel, we find that in vivo TF engages ribosomes only after ~100 amino acids are translated. Moreover, excess TF interferes with cotranslational removal of the N-terminal formyl methionine. Our studies support a triaging model in which proper protein biogenesis relies on the fine-tuned, sequential engagement of processing, targeting, and folding factors.
Cell | 2010
Athanasios Typas; Manuel Banzhaf; Bart van den Berg van Saparoea; Jolanda Verheul; Jacob Biboy; Robert J. Nichols; Matylda Zietek; Katrin Beilharz; Kai Kannenberg; Moritz von Rechenberg; Eefjan Breukink; Tanneke den Blaauwen; Carol A. Gross; Waldemar Vollmer
Summary Growth of the meshlike peptidoglycan (PG) sacculus located between the bacterial inner and outer membranes (OM) is tightly regulated to ensure cellular integrity, maintain cell shape and orchestrate division. Cytoskeletal elements direct placement and activity of PG synthases from inside the cell but precise spatiotemporal control over this process is poorly understood. We demonstrate that PG synthases are also controlled from outside the sacculus. Two OM lipoproteins, LpoA and LpoB, are essential for the function respectively of PBP1A and PBP1B, the major E. coli bifunctional PG synthases. Each Lpo protein binds specifically to its cognate PBP and stimulates its transpeptidase activity, thereby facilitating attachment of new PG to the sacculus. LpoB shows partial septal localization and our data suggest that the LpoB-PBP1B complex contributes to OM constriction during cell division. LpoA/ LpoB and their PBP docking regions are restricted to γ-proteobacteria, providing models for niche-specific regulation of sacculus growth.
Nature Methods | 2008
Athanasios Typas; Robert J. Nichols; Deborah A. Siegele; Michael Shales; Sean R. Collins; Bentley Lim; Hannes Braberg; Natsuko Yamamoto; Rikiya Takeuchi; Barry L. Wanner; Hirotada Mori; Jonathan S. Weissman; Nevan J. Krogan; Carol A. Gross
Large-scale genetic interaction studies provide the basis for defining gene function and pathway architecture. Recent advances in the ability to generate double mutants en masse in Saccharomyces cerevisiae have dramatically accelerated the acquisition of genetic interaction information and the biological inferences that follow. Here we describe a method based on F factor–driven conjugation, which allows for high-throughput generation of double mutants in Escherichia coli. This method, termed genetic interaction analysis technology for E. coli (GIANT-coli), permits us to systematically generate and array double-mutant cells on solid media in high-density arrays. We show that colony size provides a robust and quantitative output of cellular fitness and that GIANT-coli can recapitulate known synthetic interactions and identify previously unidentified negative (synthetic sickness or lethality) and positive (suppressive or epistatic) relationships. Finally, we describe a complementary strategy for genome-wide suppressor-mutant identification. Together, these methods permit rapid, large-scale genetic interaction studies in E. coli.
Science | 2013
Benjamin Ezraty; Alexandra Vergnes; Manuel Banzhaf; Yohann Duverger; Allison Huguenot; Ana Rita Brochado; Shu-Yi Su; Leon Espinosa; Laurent Loiseau; Béatrice Py; Athanasios Typas; Frédéric Barras
Unreactive Death A controversial proposal that all bactericidal antibiotics kill by reactive oxygen species (ROS) and not by their primary cell target has recently attracted high-profile refutations. The ROS-death pathway implicated overstimulation of the electron transport in respiratory chains; a malfunction that leads to ROS releasing Fe from Fe-S clusters and causing cell death via Fenton chemistry. Ezraty et al. (p. 1583) show that electron transport chains and Fe-S clusters are key to killing by aminoglycoside antibiotics but not for the reasons envisioned in the ROS theory. Fe-S clusters are essential for killing because they mature the respiratory chains that produce the necessary proton motive force for the energized uptake of aminoglycosides. Consequently, iron chelators protect against aminoglycosides, not because they scavenge the iron from Fenton chemistry, but because they block aminoglycoside uptake. The respiratory chain is required for antibiotic entry to the target cell rather than for its killing. All bactericidal antibiotics were recently proposed to kill by inducing reactive oxygen species (ROS) production, causing destabilization of iron-sulfur (Fe-S) clusters and generating Fenton chemistry. We find that the ROS response is dispensable upon treatment with bactericidal antibiotics. Furthermore, we demonstrate that Fe-S clusters are required for killing only by aminoglycosides. In contrast to cells, using the major Fe-S cluster biosynthesis machinery, ISC, cells using the alternative machinery, SUF, cannot efficiently mature respiratory complexes I and II, resulting in impendence of the proton motive force (PMF), which is required for bactericidal aminoglycoside uptake. Similarly, during iron limitation, cells become intrinsically resistant to aminoglycosides by switching from ISC to SUF and down-regulating both respiratory complexes. We conclude that Fe-S proteins promote aminoglycoside killing by enabling their uptake.
Nature | 2017
Nicola Wilck; Mariana Matus; Sean M. Kearney; Scott W. Olesen; Kristoffer Forslund; Hendrik Bartolomaeus; Stefanie Haase; Anja Mähler; András Balogh; Lajos Markó; Olga Vvedenskaya; Friedrich H. Kleiner; Dmitry Tsvetkov; Lars Klug; Paul Igor Costea; Shinichi Sunagawa; Lisa M. Maier; Natalia Rakova; Valentin Schatz; Patrick Neubert; Christian Frätzer; Alexander Krannich; Maik Gollasch; Diana A. Grohme; Beatriz F. Côrte-Real; Roman G. Gerlach; Marijana Basic; Athanasios Typas; Chuan Wu; Jens Titze
A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (TH17) cells, which can also contribute to hypertension. Induction of TH17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating TH17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased TH17 cells and increased blood pressure. Our results connect high salt intake to the gut–immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.
Cell | 2014
Seung Hyun Cho; Joanna Szewczyk; Christina Pesavento; Matylda Zietek; Manuel Banzhaf; Paula Roszczenko; Abir T. Asmar; Géraldine Laloux; Ann-Kristin Hov; Pauline Leverrier; Charles Van der Henst; Didier Vertommen; Athanasios Typas; Jean-François Collet
The cell envelope protects bacteria from their surroundings. Defects in its integrity or assembly are sensed by signal transduction systems, allowing cells to rapidly adjust. The Rcs phosphorelay responds to outer membrane (OM)- and peptidoglycan-related stress in enterobacteria. We elucidated how the OM lipoprotein RcsF, the upstream Rcs component, senses envelope stress and activates the signaling cascade. RcsF interacts with BamA, the major component of the β-barrel assembly machinery. In growing cells, BamA continuously funnels RcsF through the β-barrel OmpA, displaying RcsF on the cell surface. This process spatially separates RcsF from the downstream Rcs component, which we show is the inner membrane protein IgaA. The Rcs system is activated when BamA fails to bind RcsF and funnel it to OmpA. Newly synthesized RcsF then remains periplasmic, interacting with IgaA to activate the cascade. Thus RcsF senses envelope damage by monitoring the activity of the Bam machinery.
Nature | 2018
Lisa M. Maier; Mihaela Pruteanu; Michael Kuhn; Georg Zeller; Anja Telzerow; Exene Erin Anderson; Ana Rita Brochado; Keith Conrad Fernandez; Hitomi Dose; Hirotada Mori; Kiran Raosaheb Patil; Peer Bork; Athanasios Typas
A few commonly used non-antibiotic drugs have recently been associated with changes in gut microbiome composition, but the extent of this phenomenon is unknown. Here, we screened more than 1,000 marketed drugs against 40 representative gut bacterial strains, and found that 24% of the drugs with human targets, including members of all therapeutic classes, inhibited the growth of at least one strain in vitro. Particular classes, such as the chemically diverse antipsychotics, were overrepresented in this group. The effects of human-targeted drugs on gut bacteria are reflected on their antibiotic-like side effects in humans and are concordant with existing human cohort studies. Susceptibility to antibiotics and human-targeted drugs correlates across bacterial species, suggesting common resistance mechanisms, which we verified for some drugs. The potential risk of non-antibiotics promoting antibiotic resistance warrants further exploration. Our results provide a resource for future research on drug–microbiome interactions, opening new paths for side effect control and drug repurposing, and broadening our view of antibiotic resistance.
eLife | 2015
Andrew N Gray; Alexander J. F. Egan; Inge L. van't Veer; Jolanda Verheul; Alexandre Colavin; Alexandra Koumoutsi; Jacob Biboy; Maarten Altelaar; Mirjam Damen; Kerwyn Casey Huang; Jean-Pierre Simorre; Eefjan Breukink; Tanneke den Blaauwen; Athanasios Typas; Carol A. Gross; Waldemar Vollmer
To maintain cellular structure and integrity during division, Gram-negative bacteria must carefully coordinate constriction of a tripartite cell envelope of inner membrane, peptidoglycan (PG), and outer membrane (OM). It has remained enigmatic how this is accomplished. Here, we show that envelope machines facilitating septal PG synthesis (PBP1B-LpoB complex) and OM constriction (Tol system) are physically and functionally coordinated via YbgF, renamed CpoB (Coordinator of PG synthesis and OM constriction, associated with PBP1B). CpoB localizes to the septum concurrent with PBP1B-LpoB and Tol at the onset of constriction, interacts with both complexes, and regulates PBP1B activity in response to Tol energy state. This coordination links PG synthesis with OM invagination and imparts a unique mode of bifunctional PG synthase regulation by selectively modulating PBP1B cross-linking activity. Coordination of the PBP1B and Tol machines by CpoB contributes to effective PBP1B function in vivo and maintenance of cell envelope integrity during division. DOI: http://dx.doi.org/10.7554/eLife.07118.001