Athena Lam
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Athena Lam.
PLOS ONE | 2016
Jérôme Morinière; Bruno Cancian de Araujo; Athena Lam; Axel Hausmann; Michael Balke; Stefan Schmidt; Lars Hendrich; Dieter Doczkal; Berthold Fartmann; Samuel Arvidsson; Gerhard Haszprunar
The German Barcoding initiatives BFB and GBOL have generated a reference library of more than 16,000 metazoan species, which is now ready for applications concerning next generation molecular biodiversity assessments. To streamline the barcoding process, we have developed a meta-barcoding pipeline: We pre-sorted a single malaise trap sample (obtained during one week in August 2014, southern Germany) into 12 arthropod orders and extracted DNA from pooled individuals of each order separately, in order to facilitate DNA extraction and avoid time consuming single specimen selection. Aliquots of each ordinal-level DNA extract were combined to roughly simulate a DNA extract from a non-sorted malaise sample. Each DNA extract was amplified using four primer sets targeting the CO1-5’ fragment. The resulting PCR products (150-400bp) were sequenced separately on an Illumina Mi-SEQ platform, resulting in 1.5 million sequences and 5,500 clusters (coverage ≥10; CD-HIT-EST, 98%). Using a total of 120,000 DNA barcodes of identified, Central European Hymenoptera, Coleoptera, Diptera, and Lepidoptera downloaded from BOLD we established a reference sequence database for a local CUSTOM BLAST. This allowed us to identify 529 Barcode Index Numbers (BINs) from our sequence clusters derived from pooled Malaise trap samples. We introduce a scoring matrix based on the sequence match percentages of each amplicon in order to gain plausibility for each detected BIN, leading to 390 high score BINs in the sorted samples; whereas 268 of these high score BINs (69%) could be identified in the combined sample. The results indicate that a time consuming presorting process will yield approximately 30% more high score BINs compared to the non-sorted sample in our case. These promising results indicate that a fast, efficient and reliable analysis of next generation data from malaise trap samples can be achieved using this pipeline.
Molecular Ecology | 2011
Peter J. P. Croucher; Geoffrey S. Oxford; Athena Lam; Rosemary G. Gillespie
Genetically controlled colour polymorphisms provide a physical manifestation of the operation of selection and how this can vary according to the spatial or temporal arrangement of phenotypes, or their frequency in a population. Here, we examine the role of selection in shaping the exuberant colour polymorphism exhibited by the spider Theridion californicum. This species is part of a system in which several distantly related spiders in the same lineage, but living in very different geographical areas, exhibit remarkably convergent polymorphisms. These polymorphisms are characterized by allelic inheritance and the presence of a single common cryptic morph and, in the case of T. californicum and its congener the Hawaiian happy‐face spider Theridion grallator, numerous rare patterned morphs. We compare population differentiation estimated from colour phenotypic data to differentiation at neutral amplified fragment length polymorphisms (AFLP) loci and demonstrate that the colour polymorphism appears to be maintained by balancing selection. We also examine the patterns of selection in the genome‐wide sample of AFLP loci and compare approaches to detecting signatures of selection in this context. Our results have important implications regarding balancing selection, suggesting that selective agents can act in a similar manner across disparate taxa in globally disjunct locales resulting in parallel evolution of exuberant polymorphism.
Evolution | 2012
Peter J. P. Croucher; Geoff S. Oxford; Athena Lam; Neesha Mody; Rosemary G. Gillespie
Past geological and climatological processes shape extant biodiversity. In the Hawaiian Islands, these processes have provided the physical environment for a number of extensive adaptive radiations. Yet, single species that occur throughout the islands provide some of the best cases for understanding how species respond to the shifting dynamics of the islands in the context of colonization history and associated demographic and adaptive shifts. Here, we focus on the Hawaiian happy‐face spider, a single color‐polymorphic species, and use mitochondrial and nuclear allozyme markers to examine (1) how the mosaic formation of the landscape has dictated population structure, and (2) how cycles of expansion and contraction of the habitat matrix have been associated with demographic shifts, including a “quantum shift” in the genetic basis of the color polymorphism. The results show a marked structure among populations consistent with the age progression of the islands. The finding of low genetic diversity at the youngest site coupled with the very high diversity of haplotypes on the slightly older substrates that are highly dissected by recent volcanism suggests that the mosaic structure of the landscape may play an important role in allowing differentiation of the adaptive color polymorphism.
Molecular Ecology | 2012
Sean D. Schoville; Athena Lam; George K. Roderick
Spatial and environmental heterogeneity are major factors in structuring species distributions in alpine landscapes. These landscapes have also been affected by glacial advances and retreats, causing alpine taxa to undergo range shifts and demographic changes. These nonequilibrium population dynamics have the potential to obscure the effects of environmental factors on the distribution of genetic variation. Here, we investigate how demographic change and environmental factors influence genetic variation in the alpine butterfly Colias behrii. Data from 14 microsatellite loci provide evidence of bottlenecks in all population samples. We test several alternative models of demography using approximate Bayesian computation (ABC), with the results favouring a model in which a recent bottleneck precedes rapid population growth. Applying independent calibrations to microsatellite loci and a nuclear gene, we estimate that this bottleneck affected both northern and southern populations 531–281 years ago, coinciding with a period of global cooling. Using regression approaches, we attempt to separate the effects of population structure, geographical distance and landscape on patterns of population genetic differentiation. Only 40% of the variation in FST is explained by these models, with geographical distance and least‐cost distance among meadow patches selected as the best predictors. Various measures of genetic diversity within populations are also decoupled from estimates of local abundance and habitat patch characteristics. Our results demonstrate that demographic change can have a disproportionate influence on genetic diversity in alpine species, contrasting with other studies that suggest landscape features control contemporary demographic processes in high‐elevation environments.
PLOS ONE | 2017
Matthew H. Van Dam; Athena Lam; Katayo Sagata; Bradley Gewa; Raymond Laufa; Michael Balke; Brant C. Faircloth; Alexander Riedel
Weevils (Curculionoidea) comprise one of the most diverse groups of organisms on earth. There is hardly a vascular plant or plant part without its own species of weevil feeding on it and weevil species diversity is greater than the number of fishes, birds, reptiles, amphibians and mammals combined. Here, we employ ultraconserved elements (UCEs) designed for beetles and a novel partitioning strategy of loci to help resolve phylogenetic relationships within the radiation of Australasian smurf-weevils (Eupholini). Despite being emblematic of the New Guinea fauna, no previous phylogenetic studies have been conducted on the Eupholini. In addition to a comprehensive collection of fresh specimens, we supplement our taxon sampling with museum specimens, and this study is the first target enrichment phylogenomic dataset incorporating beetle specimens from museum collections. We use both concatenated and species tree analyses to examine the relationships and taxonomy of this group. For species tree analyses we present a novel partitioning strategy to better model the molecular evolutionary process in UCEs. We found that the current taxonomy is problematic, largely grouping species on the basis of similar color patterns. Finally, our results show that most loci required multiple partitions for nucleotide rate substitution, suggesting that single partitions may not be the optimal partitioning strategy to accommodate rate heterogeneity for UCE loci.
Molecular Ecology | 2018
Athena Lam; Morgan Gueuning; Carolin Kindler; Matthew H. Van Dam; Nadir Alvarez; Rawati Panjaitan; Helena Shaverdo; Lloyd T. White; George K. Roderick; Michael Balke
The habitat template concept applied to a freshwater system indicates that lotic species, or those which occupy permanent habitats along stream courses, are less dispersive than lentic species, or those that occur in more ephemeral aquatic habitats. Thus, populations of lotic species will be more structured than those of lentic species. Stream courses include both flowing water and small, stagnant microhabitats that can provide refuge when streams are low. Many species occur in these microhabitats but remain poorly studied. Here, we present population genetic data for one such species, the tropical diving beetle Exocelina manokwariensis (Dytiscidae), sampled from six localities along a ~300 km transect across the Birds Head Peninsula of New Guinea. Molecular data from both mitochondrial (CO1 sequences) and nuclear (ddRAD loci) regions document fine‐scale population structure across populations that are ~45 km apart. Our results are concordant with previous phylogenetic and macroecological studies that applied the habitat template concept to aquatic systems. This study also illustrates that these diverse but mostly overlooked microhabitats are promising study systems in freshwater ecology and evolutionary biology. With the advent of next‐generation sequencing, fine‐scale population genomic studies are feasible for small nonmodel organisms to help illuminate the effect of habitat stability on species’ natural history, population structure and geographic distribution.
Molecular Ecology | 2018
Athena Lam; Emmanuel F. A. Toussaint; Carolin Kindler; Matthew H. Van Dam; Rawati Panjaitan; George K. Roderick; Michael Balke
Recent theoretical advances have hypothesized a central role of habitat persistence on population genetic structure and resulting biodiversity patterns of freshwater organisms. Here, we address the hypothesis that lotic species, or lineages adapted to comparably geologically stable running water habitats (streams and their marginal habitats), have high levels of endemicity and phylogeographic structure due to the persistent nature of their habitat. We use a nextRAD DNA sequencing approach to investigate the population structure and phylogeography of a putatively widespread New Guinean species of diving beetle, Philaccolilus ameliae (Dytiscidae). We find that P. ameliae is a complex of morphologically cryptic, but geographically and genetically well‐differentiated clades. The pattern of population connectivity is consistent with theoretical predictions associated with stable lotic habitats. However, in two clades, we find a more complex pattern of low population differentiation, revealing dispersal across rugged mountains and watersheds of New Guinea up to 430 km apart. These results, while surprising, were also consistent with the original formulation of the habitat template concept by Southwood, involving lineage‐idiosyncratic evolution in response to abiotic factors. In our system, low population differentiation might reflect a young species in a phase of range expansion utilizing vast available habitat. We suggest that predictions of life history variation resulting from the dichotomy between lotic and lentic organisms require more attention to habitat characterization and microhabitat choice. Our results also underpin the necessity to study fine‐scale processes but at a larger geographical scale, as compared to solely documenting macroecological patterns, to understand ecological drivers of regional biodiversity. Comprehensive sampling especially of tropical lineages in complex and threatened environments such as New Guinea remains a critical challenge.
PLOS ONE | 2018
Matthew H. Van Dam; Athena Lam; Katayo Sagata; Bradley Gewa; Raymond Laufa; Michael Balke; Brant C. Faircloth; Alexander Riedel
[This corrects the article DOI: 10.1371/journal.pone.0188044.].
Journal of The Lepidopterists Society | 2016
Emmanuel F. A. Toussaint; Jérôme Morinière; Athena Lam; Michael Balke
ABSTRACT. The genus Polyura comprises 32 species across the Oriental Region and the Indo-Australian archipelago. Its taxonomy and systematics have recently been studied using a comprehensive molecular phylogeny. Yet, certain elements of its fauna were not available for in depth study. Here, we provide a denser taxon sampling and reconstruct a new phylogenetic hypothesis for the P. athamas group, a morphologically cryptic complex. The known geographic range of the genus is extended to Eastern Pakistan where two species fly in sympatry. Endemics from Tawi Tawi archipelago off the northern tip of Borneo have more affinities with the fauna of Sunda Islands rather than with the Philippines. Our results also suggest three taxonomic changes; the recognition of a new species and the transfer of two subspecies to a different species.
Journal of Biogeography | 2017
Oliver Hawlitschek; Emmanuel F. A. Toussaint; Philip-Sebastian Gehring; Fanomezana M. Ratsoavina; Nick Cole; Angelica Crottini; Joachim Nopper; Athena Lam; Miguel Vences; Frank Glaw