Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atish Patel is active.

Publication


Featured researches published by Atish Patel.


Drug Discovery Today | 2015

Silver nanoparticles: synthesis, properties, and therapeutic applications

Liuya Wei; Jingran Lu; Huizhong Xu; Atish Patel; Zhe-Sheng Chen; Guofang Chen

Silver nanoparticles (AgNPs) have been widely used in biomedical fields because of their intrinsic therapeutic properties. Here, we introduce methods of synthesizing AgNPs and discuss their physicochemical, localized surface plasmon resonance (LSPR) and toxicity properties. We also review the impact of AgNPs on human health and the environment along with the underlying mechanisms. More importantly, we highlight the newly emerging applications of AgNPs as antiviral agents, photosensitizers and/or radiosensitizers, and anticancer therapeutic agents in the treatment of leukemia, breast cancer, hepatocellular carcinoma, lung cancer, and skin and/or oral carcinoma.


Chinese Journal of Cancer | 2012

Multidrug resistance associated proteins in multidrug resistance

Kamlesh Sodani; Atish Patel; Rishil J. Kathawala; Zhe-Sheng Chen

Multidrug resistance proteins (MRPs) are members of the C family of a group of proteins named ATP-binding cassette (ABC) transporters. These ABC transporters together form the largest branch of proteins within the human body. The MRP family comprises of 13 members, of which MRP1 to MRP9 are the major transporters indicated to cause multidrug resistance in tumor cells by extruding anticancer drugs out of the cell. They are mainly lipophilic anionic transporters and are reported to transport free or conjugates of glutathione (GSH), glucuronate, or sulphate. In addition, MRP1 to MRP3 can transport neutral organic drugs in free form in the presence of free GSH. Collectively, MRPs can transport drugs that differ structurally and mechanistically, including natural anticancer drugs, nucleoside analogs, antimetabolites, and tyrosine kinase inhibitors. Many of these MRPs transport physiologically important anions such as leukotriene C4, bilirubin glucuronide, and cyclic nucleotides. This review focuses mainly on the physiological functions, cellular resistance characteristics, and probable in vivo role of MRP1 to MRP9.


Cancer Letters | 2013

Nilotinib potentiates anticancer drug sensitivity in murine ABCB1-, ABCG2-, and ABCC10-multidrug resistance xenograft models.

Amit K. Tiwari; Kamlesh Sodani; Chun Ling Dai; Alaa H. Abuznait; Satyakam Singh; Zhi Jie Xiao; Atish Patel; Tanaji T. Talele; Liwu Fu; Amal Kaddoumi; James M. Gallo; Zhe-Sheng Chen

A panel of clinically used tyrosine kinase inhibitors were compared and nilotinib was found to most potently sensitize specific anticancer agents by blocking the functions of ABCB1/P-glycoprotein, ABCG2/BCRP and ABCC10/MRP7 transporters involved in multi-drug resistance. Nilotinib appreciably enhanced the antitumor response of (1) paclitaxel in the ABCB1- and novel ABCC10-xenograft models, and (2) doxorubicin in a novel ABCG2-xenograft model. With no apparent toxicity observed in the above models, nilotinib attenuated tumor growth synergistically and increased paclitaxel concentrations in ABCB1-overexpressing tumors. The beneficial actions of nilotinib warrant consideration as viable combinations in the clinic with agents that suffer from MDR-mediated insensitivity.


Molecules | 2014

Tyrosine Kinase Inhibitors as Reversal Agents for ABC Transporter Mediated Drug Resistance

Nagaraju Anreddy; Pranav Gupta; Rishil J. Kathawala; Atish Patel; John N. D. Wurpel; Zhe-Sheng Chen

Tyrosine kinases (TKs) play an important role in pathways that regulate cancer cell proliferation, apoptosis, angiogenesis and metastasis. Aberrant activity of TKs has been implicated in several types of cancers. In recent years, tyrosine kinase inhibitors (TKIs) have been developed to interfere with the activity of deregulated kinases. These TKIs are remarkably effective in the treatment of various human cancers including head and neck, gastric, prostate and breast cancer and several types of leukemia. However, these TKIs are transported out of the cell by ATP-binding cassette (ABC) transporters, resulting in development of a characteristic drug resistance phenotype in cancer patients. Interestingly, some of these TKIs also inhibit the ABC transporter mediated multi drug resistance (MDR) thereby; enhancing the efficacy of conventional chemotherapeutic drugs. This review discusses the clinically relevant TKIs and their interaction with ABC drug transporters in modulating MDR.


Biochemical Pharmacology | 2012

GW583340 and GW2974, human EGFR and HER-2 inhibitors, reverse ABCG2- and ABCB1-mediated drug resistance

Kamlesh Sodani; Amit K. Tiwari; Satyakam Singh; Atish Patel; Zhi-Jie Xiao; Jun-Jiang Chen; Yue-Li Sun; Tanaji T. Talele; Zhe-Sheng Chen

The overexpression of ATP binding cassette (ABC) transporters often leads to the development of multidrug resistance (MDR) and results in a suboptimal response to chemotherapy. Previously, we reported that lapatinib (GW572016), a human epidermal growth factor receptor (EGFR) and HER-2 tyrosine kinase inhibitor (TKI), significantly reverses MDR in cancer cells by blocking the efflux function of ABC subfamily B member 1 (ABCB1) and ABC subfamily G member 2 (ABCG2). In the present study, we conducted in vitro experiments to evaluate if GW583340 and GW2974, structural analogues of lapatinib, could reverse ABCB1- and ABCG2-mediated MDR. Our results showed that GW583340 and GW2974 significantly sensitized ABCB1 and ABCG2 overexpressing MDR cells to their anticancer substrates. GW583340 and GW2974 significantly increased the intracellular accumulation of [(3)H]-paclitaxel in ABCB1 overexpressing cells and [(3)H]-mitoxantrone in ABCG2 overexpressing cells respectively. In addition, GW583340 and GW2974 significantly inhibited ABCG2-mediated transport of methotrexate in ABCG2 overexpressing membrane vesicles. There was no significant change in the expression levels of ABCB1 and ABCG2 in the cell lines exposed to 5μM of either GW583340 or GW2974 for 3 days. In addition, a docking model predicted the binding conformation of GW583340 and GW2974 to be within the transmembrane region of homology modeled human ABCB1 and ABCG2. We conclude that GW583340 and GW2974, at clinically achievable plasma concentrations, reverse ABCB1- and ABCG2-mediated MDR by blocking the drug efflux function of these transporters. These findings may be useful in developing combination therapy for cancer treatment with EGFR TKIs.


Chinese Journal of Cancer | 2012

Role of ABC transporters in cancer chemotherapy.

Yue-Li Sun; Atish Patel; Priyank Kumar; Zhe-Sheng Chen

Multidrug resistance (MDR) in cancer cells can significantly attenuate the response to chemotherapy and increase the likelihood of mortality. The major mechanism involved in conferring MDR is the overexpression of ATP-binding cassette (ABC) transporters, which can increase efflux of drugs from cancer cells, thereby decreasing intracellular drug concentration. Modulators of ABC transporters have the potential to augment the efficacy of anticancer drugs. This editorial highlights some major findings related to ABC transporters and current strategies to overcome MDR.


Molecular Cancer Therapeutics | 2014

Masitinib Antagonizes ATP-Binding Cassette Subfamily C Member 10–Mediated Paclitaxel Resistance: A Preclinical Study

Rishil J. Kathawala; Kamlesh Sodani; Kang Chen; Atish Patel; Alaa H. Abuznait; Nagaraju Anreddy; Yue-Li Sun; Amal Kaddoumi; Charles R. Ashby; Zhe-Sheng Chen

Paclitaxel displays clinical activity against a wide variety of solid tumors. However, resistance to paclitaxel significantly attenuates the response to chemotherapy. The ABC transporter subfamily C member 10 (ABCC10), also known as multidrug resistance protein 7 (MRP7) efflux transporter, is a major mediator of paclitaxel resistance. In this study, we show that masitinib, a small molecule stem-cell growth factor receptor (c-Kit) tyrosine kinase inhibitor, at nontoxic concentrations, significantly attenuates paclitaxel resistance in HEK293 cells transfected with ABCC10. Our in vitro studies indicated that masitinib (2.5 μmol/L) enhanced the intracellular accumulation and decreased the efflux of paclitaxel by inhibiting the ABCC10 transport activity without altering the expression level of ABCC10 protein. Furthermore, masitinib, in combination with paclitaxel, significantly inhibited the growth of ABCC10-expressing tumors in nude athymic mice in vivo. Masitinib administration also resulted in a significant increase in the levels of paclitaxel in the plasma, tumors, and lungs compared with paclitaxel alone. In conclusion, the combination of paclitaxel and masitinib could serve as a novel and useful therapeutic strategy to reverse paclitaxel resistance mediated by ABCC10. Mol Cancer Ther; 13(3); 714–23. ©2014 AACR.


Biochemical Pharmacology | 2014

Motesanib (AMG706), a potent multikinase inhibitor, antagonizes multidrug resistance by inhibiting the efflux activity of the ABCB1.

Yi-Jun Wang; Rishil J. Kathawala; Yun-Kai Zhang; Atish Patel; Priyank Kumar; Suneet Shukla; King Leung Fung; Suresh V. Ambudkar; Tanaji T. Talele; Zhe-Sheng Chen

Cancer cells often become resistant to chemotherapy through a phenomenon known as multidrug resistance (MDR). Several factors are responsible for the development of MDR, preeminent among them being the accelerated drug efflux mediated by overexpression of ATP binding cassette (ABC) transporters. Some small molecule tyrosine kinase inhibitors (TKIs) were recently reported to modulate the activity of ABC transporters. Therefore, the purpose of this study was to determine if motesanib, a multikinase inhibitor, could reverse ABCB1-mediated MDR. The results showed that motesanib significantly sensitized both ABCB1-transfected and drug-selected cell lines overexpressing this transporter to its substrate anticancer drugs. Motesanib significantly increased the accumulation of [(3)H]-paclitaxel in ABCB1 overexpressing cells by blocking the efflux function of ABCB1 transporter. In contrast, no significant change in the expression levels and localization pattern of ABCB1 was observed when ABCB1 overexpressing cells were exposed to 3μM motesanib for 72h. Moreover, motesanib stimulated the ATPase activity of ABCB1 in a concentration-dependent manner, indicating a direct interaction with the transporter. Consistent with these findings, the docking studies indicated favorable binding of motesanib within the transmembrane region of homology modeled human ABCB1. Here, we report for the first time, motesanib, at clinically achievable plasma concentrations, antagonizes MDR by inhibiting the efflux activity of the ABCB1 transporter. These findings may be useful for cancer combination therapy with TKIs in the clinic.


Cancer Research | 2011

Roles of Sildenafil in Enhancing Drug Sensitivity in Cancer

Zhi Shi; Amit K. Tiwari; Atish Patel; Li Wu Fu; Zhe-Sheng Chen

The phenomenon of multidrug resistance (MDR) has decreased the hope for successful cancer chemotherapy. The ATP-binding cassette (ABC) transporter superfamily is the largest transmembrane family. The overexpression of ABC transporters is a major determinant of MDR in cancer cells both in vitro and in vivo. Unfortunately, until recently, most of the strategies used to surmount ABC-transporter-mediated MDR have had limited success. An ideal modulator of MDR would be one that has a low liability to induce toxicity and alter the pharmacokinetic profile of antineoplastic drugs. Sildenafil, an inhibitor of cGMP-specific phosphodiesterase type 5, was found to significantly reverse ABC-transporter-mediated MDR. Our results indicate that sildenafil has differential inhibitory effects on ABC transporters: It significantly decreases the efflux activity of ABCB1 and ABCG2, but has no significant effects on ABCC1. Emerging evidence indicates that sildenafil and other phosphodiesterase type 5 inhibitors may enhance the sensitivity of certain types of cancer to standard chemotherapeutic drugs.


PLOS ONE | 2013

Reversal of MRP7 (ABCC10)-mediated multidrug resistance by tariquidar.

Yue Li Sun; Jun Jiang Chen; Priyank Kumar; Kang Chen; Kamlesh Sodani; Atish Patel; Yang Lu Chen; Si Dong Chen; Wen Qi Jiang; Zhe-Sheng Chen

Multidrug resistance protein 7 (MRP7, ABCC10) is a recently discovered member of the ATP-binding cassette (ABC) family which are capable of conferring resistance to a variety of anticancer drugs, including taxanes and nucleoside analogs, in vivo. MRP7 is highly expressed in non-small cell lung cancer cells, and Mrp7-KO mice are highly sensitive to paclitaxel, making MRP7 an attractive chemotherapeutic target of non-small cell lung cancer. However, only a few inhibitors of MRP7 are currently identified, with none of them having progressed to clinical trials. We used MRP7-expressing cells to investigate whether tariquidar, a third generation inhibitor of P-glycoprotein, could inhibit MRP7-mediated multidrug resistance (MDR). We found that tariquidar, at 0.1 and 0.3 µM, significantly potentiated the sensitivity of MRP7-transfected HEK293 cells to MRP7 substrates and increased the intracellular accumulation of paclitaxel. We further demonstrated that tariquidar directly impaired paclitaxel efflux and could downregulate MRP7 protein expression in a concentration- and time-dependent manner after prolonged treatment. Our findings suggest that tariquidar, at pharmacologically achievable concentrations, reverses MRP7-mediated MDR through inhibition of MRP7 protein expression and function, and thus represents a promising therapeutic agent in the clinical treatment of chemoresistant cancer patients.

Collaboration


Dive into the Atish Patel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suresh V. Ambudkar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge