Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yun-Kai Zhang is active.

Publication


Featured researches published by Yun-Kai Zhang.


Biochemical Pharmacology | 2014

Motesanib (AMG706), a potent multikinase inhibitor, antagonizes multidrug resistance by inhibiting the efflux activity of the ABCB1.

Yi-Jun Wang; Rishil J. Kathawala; Yun-Kai Zhang; Atish Patel; Priyank Kumar; Suneet Shukla; King Leung Fung; Suresh V. Ambudkar; Tanaji T. Talele; Zhe-Sheng Chen

Cancer cells often become resistant to chemotherapy through a phenomenon known as multidrug resistance (MDR). Several factors are responsible for the development of MDR, preeminent among them being the accelerated drug efflux mediated by overexpression of ATP binding cassette (ABC) transporters. Some small molecule tyrosine kinase inhibitors (TKIs) were recently reported to modulate the activity of ABC transporters. Therefore, the purpose of this study was to determine if motesanib, a multikinase inhibitor, could reverse ABCB1-mediated MDR. The results showed that motesanib significantly sensitized both ABCB1-transfected and drug-selected cell lines overexpressing this transporter to its substrate anticancer drugs. Motesanib significantly increased the accumulation of [(3)H]-paclitaxel in ABCB1 overexpressing cells by blocking the efflux function of ABCB1 transporter. In contrast, no significant change in the expression levels and localization pattern of ABCB1 was observed when ABCB1 overexpressing cells were exposed to 3μM motesanib for 72h. Moreover, motesanib stimulated the ATPase activity of ABCB1 in a concentration-dependent manner, indicating a direct interaction with the transporter. Consistent with these findings, the docking studies indicated favorable binding of motesanib within the transmembrane region of homology modeled human ABCB1. Here, we report for the first time, motesanib, at clinically achievable plasma concentrations, antagonizes MDR by inhibiting the efflux activity of the ABCB1 transporter. These findings may be useful for cancer combination therapy with TKIs in the clinic.


Oncology Reports | 2014

β-elemene, a compound derived from Rhizoma zedoariae, reverses multidrug resistance mediated by the ABCB1 transporter

Huiqin Guo; Guan-Nan Zhang; Yi-Jun Wang; Yun-Kai Zhang; Kamlesh Sodani; Tanaji T. Talele; Charles R. Ashby; Zhe-Sheng Chen

In the present in vitro study, we examined the effect of the compound β-elemene on the response of KB-C2 cells overexpressing the ABCB1 transporter to specific antineoplastic compounds. The MTT assay was used to determine the effects of β-elemene in combination with other anticancer drugs on ABCB1-overexpressing cancer cell lines. Furthermore, we used [3H]-paclitaxel accumulation, efflux assay, immunofluorescence experiments, western blot assays and docking analysis to ascertain the mechanism of action of β-elemene. The incubation of KB-C2 cells overexpressing ABCB1 transporter with β-elemene (100 µM) significantly augmented the antineoplastic efficacy of colchicine, vinblastine and paclitaxel when compared to KB-C2 cells incubated with these drugs alone. In HEK293 cells overexpressing the ABCB1 transporter, β-elemene significantly increased the cytotoxicity of paclitaxel. In addition, 100 µM of β-elemene significantly increased the accumulation of [3H]-paclitaxel and this was due to a decrease in [3H]-paclitaxel efflux when compared to controls. The incubation of KB-C2 cells with β-elemene (100 µM) for 72 h did not significantly alter the expression of ABCB1 protein levels. Immunofluorescence experiments indicated that β-elemene did not significantly alter the subcellular localization of the ABCB1 transporter. Docking analysis indicated that β-elemene binds to the drug-binding site of ABCB1 transporter. Finally, β-elemene at 100 µM partially (~50%) increased the sensitivity of the BCRP-overexpressing cell line, NCI-H460/MX20, to mitoxantrone, but β-elemene did not significantly alter the resistance of MRP1-transfected HEK293/MRP1 cells to vincristine. Overall, our in vitro findings indicated that β-elemene potentiates the cytotoxic effects of various antineoplastic drugs in cell lines overexpressing the ABCB1 transporter and that this is due to the inhibition of the efflux component of the ABCB1 transporter.


Cancers | 2014

Repositioning of Tyrosine Kinase Inhibitors as Antagonists of ATP-Binding Cassette Transporters in Anticancer Drug Resistance.

Yi-Jun Wang; Yun-Kai Zhang; Rishil J. Kathawala; Zhe-Sheng Chen

The phenomenon of multidrug resistance (MDR) has attenuated the efficacy of anticancer drugs and the possibility of successful cancer chemotherapy. ATP-binding cassette (ABC) transporters play an essential role in mediating MDR in cancer cells by increasing efflux of drugs from cancer cells, hence reducing the intracellular accumulation of chemotherapeutic drugs. Interestingly, small-molecule tyrosine kinase inhibitors (TKIs), such as AST1306, lapatinib, linsitinib, masitinib, motesanib, nilotinib, telatinib and WHI-P154, have been found to have the capability to overcome anticancer drug resistance by inhibiting ABC transporters in recent years. This review will focus on some of the latest and clinical developments with ABC transporters, TKIs and anticancer drug resistance.


ACS Medicinal Chemistry Letters | 2014

Novel Hybrids of Natural Oridonin-Bearing Nitrogen Mustards as Potential Anticancer Drug Candidates

Shengtao Xu; Lingling Pei; Chengqian Wang; Yun-Kai Zhang; Dahong Li; Hequan Yao; Xiaoming Wu; Zhe-Sheng Chen; Yijun Sun; Jinyi Xu

A series of novel hybrids from natural product oridonin and nitrogen mustards were designed and synthesized to obtain more efficacious and less toxic antitumor agents. The antiproliferative evaluation showed that most conjugates were more potent than their parent compounds oridonin and clinically used nitrogen mustards against four human cancer cell lines (K562, MCF-7, Bel-7402, and MGC-803). Furthermore, the representative compounds 16a-c exhibited antiproliferative activities against the multidrug resistant cell lines (SW620/AD300 and NCI-H460/MX20). It was shown that the most effective compound 16b possesses a strong inhibitory activity with an IC50 value 21-fold lower than that of oridonin in MCF-7 cells and also exhibits selective cytotoxicity toward the cancer cells. Intriguingly, compound 16b has been demonstrated to significantly induce apoptosis and affect cell cycle progression in human hepatoma Bel-7402 cells.


International Journal of Oncology | 2014

Masitinib antagonizes ATP-binding cassette subfamily G member 2-mediated multidrug resistance

Rishil J. Kathawala; Jun-Jiang Chen; Yun-Kai Zhang; Yi-Jun Wang; Atish Patel; De-Shen Wang; Tanaji T. Talele; Charles R. Ashby; Zhe-Sheng Chen

In this in vitro study, we determined whether masitinib could reverse multidrug resistance (MDR) in cells overexpressing the ATP binding cassette subfamily G member 2 (ABCG2) transporter. Masitinib (1.25 and 2.5 μM) significantly decreases the resistance to mitoxantrone (MX), SN38 and doxorubicin in HEK293 and H460 cells overexpressing the ABCG2 transporter. In addition, masitinib (2.5 μM) significantly increased the intracellular accumulation of [3H]-MX, a substrate for ABCG2, by inhibiting the function of ABCG2 and significantly decreased the efflux of [3H]-MX. However, masitinib (2.5 μM) did not significantly alter the expression of the ABCG2 protein. In addition, a docking model suggested that masitinib binds within the transmembrane region of a homology-modeled human ABCG2 transporter. Overall, our in vitro findings suggest that masitinib reverses MDR to various anti-neoplastic drugs in HEK293 and H460 cells overexpressing ABCG2 by inhibiting their transport activity as opposed to altering their levels of expression.


Journal of Medicinal Chemistry | 2017

A Novel Potent Anticancer Compound Optimized from a Natural Oridonin Scaffold Induces Apoptosis and Cell Cycle Arrest through the Mitochondrial Pathway

Shengtao Xu; Hong Yao; Shanshan Luo; Yun-Kai Zhang; Dong-Hua Yang; Dahong Li; Guangyu Wang; Mei Hu; Yangyi Qiu; Xiaoming Wu; Hequan Yao; Weijia Xie; Zhe-Sheng Chen; Jinyi Xu

The cytotoxicity of the natural ent-kaurene diterpenoid, oridonin, has been extensively studied. However, the application of oridonin for cancer therapy was hampered primarily by its moderate potency. In this study, a series of oridonin A-ring modified analogues, and their derivatives bearing various substituents on 14-OH position, were designed, synthesized, and evaluated for anticancer efficacy. Some of the derivatives were significantly more potent than oridonin against both drug-sensitive and drug-resistant cancer cells. The most potent compound, 13p, was 200-fold more efficacious than oridonin in MCF-7 cancer cells. Furthermore, 13p induced apoptosis and cell cycle arrest at the G2/M phase. A decrease in mitochondrial membrane potential and an increase in Bax/Bcl-2 ratio, accompanied by activated caspase-3 cleavage, were observed in MCF-7 cells after treatment with 13p, suggesting that the mitochondrial pathway was involved in the 13p-mediated apoptosis. Moreover, 13p significantly inhibited tumor growth in mouse xenograft models and had no observable toxic effect.


Marine Drugs | 2015

Esters of the marine-derived triterpene sipholenol A reverse P-GP-mediated drug resistance.

Yongchao Zhang; Yun-Kai Zhang; Yi-Jun Wang; Saurabh G. Vispute; Sandeep Jain; Yangmin Chen; Jessalyn Li; Diaa T. A. Youssef; Khalid A. El Sayed; Zhe-Sheng Chen

Our previous studies showed that several sipholane triterpenes, sipholenol A, sipholenone E, sipholenol L and siphonellinol D, have potent reversal effect for multidrug resistance (MDR) in cancer cells that overexpressed P-glycoprotein (P-gp/ABCB1). Through comparison of cytotoxicity towards sensitive and multi-drug resistant cell lines, we identified that the semisynthetic esters sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate potently reversed P-gp-mediated MDR but had no effect on MRP1/ABCC1 and BCRP/ABCG2-mediated MDR. The results from [3H]-paclitaxel accumulation and efflux studies suggested that these two triterpenoids were able to increase the intracellular accumulation of paclitaxel by inhibiting its active efflux. In addition, western blot analysis revealed that these two compounds did not alter the expression levels of P-gp when treated up to 72 h. These sipholenol derivatives also stimulated the ATPase activity of P-gp membranes, which suggested that they might be substrates of P-gp. Moreover, in silico molecular docking studies revealed the virtual binding modes of these two compounds into human homology model of P-gp. In conclusion, sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate efficiently inhibit the P-gp and may represent potential reversal agents for the treatment of multidrug resistant cancers.


Oncotarget | 2016

Tea nanoparticle, a safe and biocompatible nanocarrier, greatly potentiates the anticancer activity of doxorubicin

Yi-Jun Wang; Yujian Huang; Nagaraju Anreddy; Guan-Nan Zhang; Yun-Kai Zhang; Meina Xie; Derrick Lin; Dong-Hua Yang; Mingjun Zhang; Zhe-Sheng Chen

An infusion-dialysis based procedure has been developed as an approach to isolate organic nanoparticles from green tea. Tea nanoparticle (TNP) can effectively load doxorubicin (DOX) via electrostatic and hydrophobic interactions. We established an ABCB1 overexpressing tumor xenograft mouse model to investigate whether TNP can effectively deliver DOX into tumors and bypass the efflux function of the ABCB1 transporter, thereby increasing the intratumoral accumulation of DOX and potentiating the anticancer activity of DOX. MTT assays suggested that DOX-TNP showed higher cytotoxicity toward CCD-18Co, SW620 and SW620/Ad300 cells than DOX. Animal study revealed that DOX-TNP resulted in greater inhibitory effects on the growth of SW620 and SW620/Ad300 tumors than DOX. In pharmacokinetics study, DOX-TNP greatly increased the SW620 and SW620/Ad300 intratumoral concentrations of DOX. But DOX-TNP had no effect on the plasma concentrations of DOX. Furthermore, TNP is a safe nanocarrier with excellent biocompatibility and minimal toxicity. Ex vivo IHC analysis of SW620 and SW620/Ad300 tumor sections revealed evidence of prominent antitumor activity of DOX-TNP. In conclusion, our findings suggested that natural nanomaterials could be useful in combating multidrug resistance (MDR) in cancer cells and potentiating the anticancer activity of chemotherapeutic agents in cancer treatment.


Oncotarget | 2015

A-803467, a tetrodotoxin-resistant sodium channel blocker, modulates ABCG2-mediated MDR in vitro and in vivo

Nagaraju Anreddy; Atish Patel; Yun-Kai Zhang; Yi-Jun Wang; Suneet Shukla; Rishil J. Kathawala; Priyank Kumar; Pranav Gupta; Suresh V. Ambudkar; John N. D. Wurpel; Zhe-Sheng Chen; Huiqin Guo

ATP-binding cassette subfamily G member 2 (ABCG2) is a member of the ABC transporter superfamily proteins, which has been implicated in the development of multidrug resistance (MDR) in cancer, apart from its physiological role to remove toxic substances out of the cells. The diverse range of substrates of ABCG2 includes many antineoplastic agents such as topotecan, doxorubicin and mitoxantrone. ABCG2 expression has been reported to be significantly increased in some solid tumors and hematologic malignancies, correlated to poor clinical outcomes. In addition, ABCG2 expression is a distinguishing feature of cancer stem cells, whereby this membrane transporter facilitates resistance to the chemotherapeutic drugs. To enhance the chemosensitivity of cancer cells, attention has been focused on MDR modulators. In this study, we investigated the effect of a tetrodotoxin-resistant sodium channel blocker, A-803467 on ABCG2-overexpressing drug selected and transfected cell lines. We found that at non-toxic concentrations, A-803467 could significantly increase the cellular sensitivity to ABCG2 substrates in drug-resistant cells overexpressing either wild-type or mutant ABCG2. Mechanistic studies demonstrated that A-803467 (7.5 μM) significantly increased the intracellular accumulation of [3H]-mitoxantrone by inhibiting the transport activity of ABCG2, without altering its expression levels. In addition, A-803467 stimulated the ATPase activity in membranes overexpressed with ABCG2. In a murine model system, combination treatment of A-803467 (35 mg/kg) and topotecan (3 mg/kg) significantly inhibited the tumor growth in mice xenografted with ABCG2-overexpressing cancer cells. Our findings indicate that a combination of A-803467 and ABCG2 substrates may potentially be a novel therapeutic treatment in ABCG2-positive drug resistant cancers.


Molecules | 2016

Osimertinib (AZD9291), a Mutant-Selective EGFR Inhibitor, Reverses ABCB1-Mediated Drug Resistance in Cancer Cells

Xiao-Yu Zhang; Yun-Kai Zhang; Yi-Jun Wang; Pranav Gupta; Leli Zeng; Megan Xu; Xiu-Qi Wang; Dong-Hua Yang; Zhe-Sheng Chen

In recent years, tyrosine kinase inhibitors (TKIs) have been shown capable of inhibiting the ATP-binding cassette (ABC) transporter-mediated multidrug resistance (MDR). In this study, we determine whether osimertinib, a novel selective, irreversible EGFR (epidermal growth factor receptor) TKI, could reverse ABC transporter-mediated MDR. The results showed that, at non-toxic concentrations, osimertinib significantly sensitized both ABCB1-transfected and drug-selected cell lines to substrate anticancer drugs colchicine, paclitaxel, and vincristine. Osimertinib significantly increased the accumulation of [3H]-paclitaxel in ABCB1 overexpressing cells by blocking the efflux function of ABCB1 transporter. In contrast, no significant alteration in the expression levels and localization pattern of ABCB1 was observed when ABCB1 overexpressing cells were exposed to 0.3 µM osimertinib for 72 h. In addition, ATPase assay showed osimertinib stimulated ABCB1 ATPase activity. Molecular docking and molecular dynamic simulations showed osimertinib has strong and stable interactions at the transmembrane domain of human homology ABCB1. Taken together, our findings suggest that osimertinib, a clinically-approved third-generation EGFR TKI, can reverse ABCB1-mediated MDR, which supports the combination therapy with osimertinib and ABCB1 substrates may potentially be a novel therapeutic stategy in ABCB1-positive drug resistant cancers.

Collaboration


Dive into the Yun-Kai Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suneet Shukla

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Suresh V. Ambudkar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge