Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhe-Sheng Chen is active.

Publication


Featured researches published by Zhe-Sheng Chen.


Cancer Research | 2008

Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2.

Chun Ling Dai; Amit K. Tiwari; Chung Pu Wu; Xiao Dong Su; Si Rong Wang; Dong Geng Liu; Charles R. Ashby; Yan Huang; Robert W. Robey; Yong Ju Liang; Li Ming Chen; Cheng Jun Shi; Suresh V. Ambudkar; Zhe-Sheng Chen; Li Wu Fu

Lapatinib is active at the ATP-binding site of tyrosine kinases that are associated with the human epidermal growth factor receptor (Her-1 or ErbB1) and Her-2. It is conceivable that lapatinib may inhibit the function of ATP-binding cassette (ABC) transporters by binding to their ATP-binding sites. The aim of this study was to investigate the ability of lapatinib to reverse tumor multidrug resistance (MDR) due to overexpression of ABC subfamily B member 1 (ABCB1) and ABC subfamily G member 2 (ABCG2) transporters. Our results showed that lapatinib significantly enhanced the sensitivity to ABCB1 or ABCG2 substrates in cells expressing these transporters, although a small synergetic effect was observed in combining lapatinib and conventional chemotherapeutic agents in parental sensitive MCF-7 or S1 cells. Lapatinib alone, however, did not significantly alter the sensitivity of non-ABCB1 or non-ABCG2 substrates in sensitive and resistant cells. Additionally, lapatinib significantly increased the accumulation of doxorubicin or mitoxantrone in ABCB1- or ABCG2-overexpressing cells and inhibited the transport of methotrexate and E(2)17betaG by ABCG2. Furthermore, lapatinib stimulated the ATPase activity of both ABCB1 and ABCG2 and inhibited the photolabeling of ABCB1 or ABCG2 with [(125)I]iodoarylazidoprazosin in a concentration-dependent manner. However, lapatinib did not affect the expression of these transporters at mRNA or protein levels. Importantly, lapatinib also strongly enhanced the effect of paclitaxel on the inhibition of growth of the ABCB1-overexpressing KBv200 cell xenografts in nude mice. Overall, we conclude that lapatinib reverses ABCB1- and ABCG2-mediated MDR by directly inhibiting their transport function. These findings may be useful for cancer combinational therapy with lapatinib in the clinic.


Journal of Nanomaterials | 2011

Biosynthesis of nanoparticles by microorganisms and their applications

Xiangqian Li; Huizhong Xu; Zhe-Sheng Chen; Guofang Chen

The development of eco-friendly technologies in material synthesis is of considerable importance to expand their biological applications. Nowadays, a variety of inorganic nanoparticles with well-defined chemical composition, size, and morphology have been synthesized by using different microorganisms, and their applications in many cutting-edge technological areas have been explored. This paper highlights the recent developments of the biosynthesis of inorganic nanoparticles including metallic nanoparticles, oxide nanoparticles, sulfide nanoparticles, and other typical nanoparticles. Different formation mechanisms of these nanoparticles will be discussed as well. The conditions to control the size/shape and stability of particles are summarized. The applications of these biosynthesized nanoparticles in a wide spectrum of potential areas are presented including targeted drug delivery, cancer treatment, gene therapy and DNA analysis, antibacterial agents, biosensors, enhancing reaction rates, separation science, and magnetic resonance imaging (MRI). The current limitations and future prospects for the synthesis of inorganic nanoparticles by microorganisms are discussed.


Cancer Research | 2007

Erlotinib (Tarceva, OSI-774) Antagonizes ATP-Binding Cassette Subfamily B Member 1 and ATP-Binding Cassette Subfamily G Member 2-Mediated Drug Resistance

Zhi Shi; Xing Xiang Peng; In Wha Kim; Suneet Shukla; Qiu Sheng Si; Robert W. Robey; Susan E. Bates; Tong Shen; Charles R. Ashby; Li Wu Fu; Suresh V. Ambudkar; Zhe-Sheng Chen

It has been reported that gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), has the ability to modulate the function of certain ATP-binding cassette (ABC) transporters and to reverse ABC subfamily B member 1 (ABCB1; P-glycoprotein)- and ABC subfamily G member 2 (ABCG2; breast cancer resistance protein/mitoxantrone resistance protein)-mediated multidrug resistance (MDR) in cancer cells. However, it is unknown whether other EGFR TKIs have effects similar to that of gefitinib. In the present study, we have investigated the interaction of another EGFR TKI, erlotinib, with selected ABC drug transporters. Our findings show that erlotinib significantly potentiated the sensitivity of established ABCB1 or ABCG2 substrates and increased the accumulation of paclitaxel or mitoxantrone in ABCB1- or ABCG2-overexpressing cells. Furthermore, erlotinib did not significantly alter the sensitivity of non-ABCB1 or non-ABCG2 substrates in all cells and was unable to reverse MRP1-mediated MDR and had no effect on the parental cells. However, erlotinib remarkably inhibited the transport of E(2)17 beta G and methotrexate by ABCG2. In addition, the results of ATPase assays show that erlotinib stimulated the ATPase activity of both ABCB1 and ABCG2. Interestingly, erlotinib slightly inhibited the photolabeling of ABCB1 with [(125)I]iodoarylazidoprazosin (IAAP) at high concentration, but it did not inhibit the photolabeling of ABCG2 with IAAP. Overall, we conclude that erlotinib reverses ABCB1- and ABCG2-mediated MDR in cancer cells through direct inhibition of the drug efflux function of ABCB1 and ABCG2. These findings may be useful for cancer combinational therapy with erlotinib in the clinic.


Drug Resistance Updates | 2015

The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade

Rishil J. Kathawala; Pranav Gupta; Charles R. Ashby; Zhe-Sheng Chen

ATP-binding cassette (ABC) transporters represent one of the largest and oldest families of membrane proteins in all extant phyla from prokaryotes to humans, which couple the energy derived from ATP hydrolysis essentially to translocate, among various substrates, toxic compounds across the membrane. The fundamental functions of these multiple transporter proteins include: (1) conserved mechanisms related to nutrition and pathogenesis in bacteria, (2) spore formation in fungi, and (3) signal transduction, protein secretion and antigen presentation in eukaryotes. Moreover, one of the major causes of multidrug resistance (MDR) and chemotherapeutic failure in cancer therapy is believed to be the ABC transporter-mediated active efflux of a multitude of structurally and mechanistically distinct cytotoxic compounds across membranes. It has been postulated that ABC transporter inhibitors known as chemosensitizers may be used in combination with standard chemotherapeutic agents to enhance their therapeutic efficacy. The current paper reviews the advance in the past decade in this important domain of cancer chemoresistance and summarizes the development of new compounds and the re-evaluation of compounds originally designed for other targets as transport inhibitors of ATP-dependent drug efflux pumps.


Drug Discovery Today | 2015

Silver nanoparticles: synthesis, properties, and therapeutic applications

Liuya Wei; Jingran Lu; Huizhong Xu; Atish Patel; Zhe-Sheng Chen; Guofang Chen

Silver nanoparticles (AgNPs) have been widely used in biomedical fields because of their intrinsic therapeutic properties. Here, we introduce methods of synthesizing AgNPs and discuss their physicochemical, localized surface plasmon resonance (LSPR) and toxicity properties. We also review the impact of AgNPs on human health and the environment along with the underlying mechanisms. More importantly, we highlight the newly emerging applications of AgNPs as antiviral agents, photosensitizers and/or radiosensitizers, and anticancer therapeutic agents in the treatment of leukemia, breast cancer, hepatocellular carcinoma, lung cancer, and skin and/or oral carcinoma.


Cancer Research | 2004

Analysis of the drug resistance profile of multidrug resistance protein 7 (ABCC10): resistance to docetaxel.

Elizabeth Hopper-Borge; Zhe-Sheng Chen; Irina Shchaveleva; Martin G. Belinsky; Gary D. Kruh

The multidrug resistance protein (MRP) family consists of nine members that can be categorized according to whether or not a third (NH2-terminal) membrane-spanning domain is present. Three (MRP1, MRP2, and MRP3) of the four members that have this structural feature are able to confer resistance to natural product anticancer agents. We previously established that MRP7, the remaining family member that has three membrane-spanning domains, possesses the cardinal biochemical activity of MRPs in that it is able to transport amphipathic anions such as 17β-estradiol 17-(β-d-glucuronide). However, the drug resistance profile of the pump has not been determined. In this study, the drug resistance capabilities of MRP7 are evaluated by analyzing the resistance profiles of two clones of HEK293 cells in which the pump was ectopically expressed. MRP7-transfected HEK293 cells exhibited the highest levels of resistance toward docetaxel (9–13-fold). In addition, lower levels of resistance were observed for paclitaxel (3-fold), vincristine (3-fold), and vinblastine (3–4-fold). Consistent with the operation of an ATP-dependent efflux pump, MRP7-transfected cells exhibited reduced accumulation of radiolabeled paclitaxel compared with HEK293 cells transfected with parental plasmid. These results indicate that MRP7, unlike other MRPs, is a resistance factor for taxanes.


Journal of Bioenergetics and Biomembranes | 2001

MRP Subfamily Transporters and Resistance to Anticancer Agents

Gary D. Kruh; Hao Zeng; Philip A. Rea; Guosheng Liu; Zhe-Sheng Chen; Kun Lee; Martin G. Belinsky

The MRP subfamily of ABC transporters from mammals consists of at least seven members, six of which have been implicated in the transport of amphipathic anions. MRP1, MRP2, and MRP3 bear a close structural resemblance, confer resistance to a variety of natural products as well as methotrexate, and have the facility for transporting glutathione and glucuronate conjugates. MRP1 is a ubiquitously expressed efflux pump for the products of phase II of xenobiotic detoxification, while MRP2, whose hereditary deficiency results in Dubin–Johnson syndrome, functions to extrude organic anions into the bile. MRP3 is distinguished by its capacity to transport the monoanionic bile constituent glycocholate, and may function as a basolateral back-up system for the detoxification of hepatocytes when the usual canalicular route is impaired by cholestatic conditions. MRP4 and MRP5 resemble each other more closely than they resemble MRPs 1–3 and confer resistance to purine and nucleotide analogs which are either inherently anionic, as in the case of the anti-AIDS drug PMEA, or are phosphorylated and converted to anionic amphiphiles in the cell, as in the case of 6-MP. Given their capacity for transporting cyclic nucleotides, MRP4 and MRP5 have also been implicated in a broad range of cellular signaling processes. The drug resistance activity and physiological substrates of MRP6 are unknown. However, its hereditary deficiency results in pseudoxanthoma elasticum, a multisystem disorder affecting skin, eyes, and blood vessels. It is hoped that elucidation of the resistance profiles and physiological functions of the different members of the MRP subfamily will provide new insights into the molecular basis of clinical drug resistance and spawn new strategies for combating this phenomenon.


FEBS Letters | 1999

Enhanced transport of anticancer agents and leukotriene C4 by the human canalicular multispecific organic anion transporter (cMOAT/MRP2)

Takeshi Kawabe; Zhe-Sheng Chen; Morimasa Wada; Takeshi Uchiumi; Mayumi Ono; Shin-ichi Akiyama; Michihiko Kuwano

We established stable human canalicular multispecific organic anion transporter (cMOAT/MRP2) cDNA transfectants, CHO/cMOAT from non‐polarized Chinese hamster ovary (CHO)‐K1 and LLC/cMOAT from polarized pig kidney epithelial LLC‐PK1. Human cMOAT was mainly localized in the plasma membrane of CHO/cMOAT and in the apical membrane of LLC/cMOAT. The ATP‐dependent uptake of leukotriene C4 (LTC4) into CHO/cMOAT membrane vesicles was enhanced compared with empty vector transfectants. K m values in CHO/cMOAT membrane vesicles were 0.24 μM for LTC4 and 175 μM for ATP. Drug sensitivity to vincristine and cisplatin in human cMOAT cDNA transfectants decreased, but not to etoposide. Cellular accumulation of vincristine and cisplatin in human cMOAT cDNA transfectants decreased, but not of etoposide. The uptake of LTC4 into CHO/cMOAT membrane vesicles was inhibited by exogenous administration of vincristine or cisplatin, but not that of etoposide. Moreover, this inhibition was more enhanced in the presence of glutathione. These consequences indicate that drug resistance to vincristine or cisplatin appears to be modulated by human cMOAT through transport of the agents, possibly in direct or indirect association with glutathione.


Biochemical Pharmacology | 2009

Nilotinib (AMN107, Tasigna®) reverses multidrug resistance by inhibiting the activity of the ABCB1/Pgp and ABCG2/BCRP/MXR transporters

Amit K. Tiwari; Kamlesh Sodani; Sirong Wang; Yehong Kuang; Charles R. Ashby; Xiang Chen; Zhe-Sheng Chen

Nilotinib, a BCR-Abl tyrosine kinase inhibitor (TKI), was developed to surmount resistance or intolerance to imatinib in patients with Philadelphia positive chronic myelogenous leukemia. Recently, it was shown that several human multidrug resistance (MDR) ATP-binding cassette (ABC) proteins could be modulated by specific TKIs. MDR can produce cancer chemotherapy failure, typically due to overexpression of ABC transporters, which are involved in the extrusion of therapeutic drugs. Here, we report for the first time that nilotinib potentiates the cytotoxicity of widely used therapeutic substrates of ABCG2, such as mitoxantrone, doxorubicin, and ABCB1 substrates including colchicine, vincristine, and paclitaxel. Nilotinib also significantly enhances the accumulation of paclitaxel in cell lines overexpressing ABCB1. Similarly, nilotinib significantly increases the intracellular accumulation of mitoxantrone in cells transfected with ABCG2. Furthermore, nilotinib produces a concentration-dependent inhibition of the ABCG2-mediated transport of methotrexate (MTX), as well as E(2)17betaG a physiological substrate of ABCG2. Uptake studies in membrane vesicles overexpressing ABCG2 have indicated that nilotinib inhibits ABCG2 similar to other established TKIs as well as fumitremorgin C. Nilotinib is a potent competitive inhibitor of MTX transport by ABCG2 with a K(i) value of 0.69+/-0.083 microM as demonstrated by kinetic analysis of nilotinib. Overall, our results indicate that nilotinib could reverse ABCB1- and ABCG2-mediated MDR by blocking the efflux function of these transporters. These findings may be used to guide the design of present and future clinical trials with nilotinib, elucidating potential pharmacokinetic interactions. Also, these findings may be useful in clinical practice for cancer combination therapy with nilotinib.


FEBS Journal | 2011

Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases

Zhe-Sheng Chen; Amit K. Tiwari

The ATP‐binding cassette (ABC) transporters are a superfamily of membrane proteins that are best known for their ability to transport a wide variety of exogenous and endogenous substances across membranes against a concentration gradient via ATP hydrolysis. There are seven subfamilies of human ABC transporters, one of the largest being the ‘C’ subfamily (gene symbol ABCC). Nine ABCC subfamily members, the so‐called multidrug resistance proteins (MRPs) 1–9, have been implicated in mediating multidrug resistance in tumor cells to varying degrees as the efflux extrude chemotherapeutic compounds (or their metabolites) from malignant cells. Some of the MRPs are also known to either influence drug disposition in normal tissues or modulate the elimination of drugs (or their metabolites) via hepatobiliary or renal excretory pathways. In addition, the cellular efflux of physiologically important organic anions such as leukotriene C4 and cAMP is mediated by one or more of the MRPs. Finally, mutations in several MRPs are associated with human genetic disorders. In this minireview, the current biochemical and physiological knowledge of MRP1–MRP9 in cancer chemotherapy and human genetic disease is summarized. The mutations in MRP2/ABCC2 leading to conjugated hyperbilirubinemia (Dubin–Johnson syndrome) and in MRP6/ABCC6 leading to the connective tissue disorder Pseudoxanthoma elasticum are also discussed.

Collaboration


Dive into the Zhe-Sheng Chen's collaboration.

Top Co-Authors

Avatar

Suresh V. Ambudkar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Wu Fu

Sun Yat-sen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge