Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Atsushi Ishikado is active.

Publication


Featured researches published by Atsushi Ishikado.


Biochemical and Biophysical Research Communications | 2013

Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes

Chisato Kusunoki; Liu Yang; Takeshi Yoshizaki; Fumiyuki Nakagawa; Atsushi Ishikado; Motoyuki Kondo; Katsutaro Morino; Osamu Sekine; Satoshi Ugi; Yoshihiko Nishio; Atsunori Kashiwagi; Hiroshi Maegawa

Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid (ω3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of ω3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with ω3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). ω3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with ω3-PUFA prevented H(2)O(2)-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.


Biochemical and Biophysical Research Communications | 2010

Low concentration of 4-hydroxy hexenal increases heme oxygenase-1 expression through activation of Nrf2 and antioxidative activity in vascular endothelial cells.

Atsushi Ishikado; Yoshihiko Nishio; Katsutaro Morino; Satoshi Ugi; Hajime Kondo; Taketoshi Makino; Atsunori Kashiwagi; Hiroshi Maegawa

Large-scale clinical studies have shown that n-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic and docosahexaenoic acids reduce cardiovascular events without improving classical risk factors for atherosclerosis. Recent studies have proposed that direct actions of n-3 PUFAs themselves, or of their enzymatic metabolites, have antioxidative and anti-inflammatory effects on vascular cells. Although a recent study showed that plasma 4-hydroxy hexenal (4-HHE), a peroxidation product of n-3 PUFA, increased after supplementation of docosahexaenoic acid, the antiatherogenic effects of 4-HHE in vascular cells remain unclear. In the present study, we tested the hypothesis that 4-HHE induces the antioxidative enzyme heme oxygenase-1 (HO-1) through activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulatory transcriptional factor, and prevents oxidative stress-induced cytotoxicity in vascular endothelial cells. This mechanism could partly explain the cardioprotective effects of n-3 PUFAs. Human umbilical vein endothelial cells were stimulated with 1-10μM 4-HHE or 4-hydroxy nonenal (4-HNE), a peroxidation product of n-6 PUFAs. Both 4-HHE and 4-HNE dose-dependently increased HO-1 mRNA and protein expression, and intranuclear expression and DNA binding of Nrf2 at 5μM. Small interfering RNA for Nrf2 significantly reduced 4-HHE- or 4-HNE-induced HO-1 mRNA and protein expression. Furthermore, pretreatment with 4-HHE or 4-HNE prevented tert-butyl hydroperoxide-induced cytotoxicity. In conclusion, 4-HHE, a peroxidation product of n-3 PUFAs, stimulated expression of the antioxidant enzyme HO-1 through the activation of Nrf2 in vascular endothelial cells. This resulted in prevention of oxidative stress-induced cytotoxicity, and may represent a possible mechanism to partly explain the cardioprotective effects of n-3 PUFAs.


PLOS ONE | 2013

4-Hydroxy Hexenal Derived from Docosahexaenoic Acid Protects Endothelial Cells via Nrf2 Activation

Atsushi Ishikado; Katsutaro Morino; Yoshihiko Nishio; Fumiyuki Nakagawa; Atsushi Mukose; Yoko Sono; Nagisa Yoshioka; Keiko Kondo; Osamu Sekine; Takeshi Yoshizaki; Satoshi Ugi; Takashi Uzu; Hiromichi Kawai; Taketoshi Makino; Tomio Okamura; Masayuki Yamamoto; Atsunori Kashiwagi; Hiroshi Maegawa

Recent studies have proposed that n-3 polyunsaturated fatty acids (n-3 PUFAs) have direct antioxidant and anti-inflammatory effects in vascular tissue, explaining their cardioprotective effects. However, the molecular mechanisms are not yet fully understood. We tested whether n-3 PUFAs showed antioxidant activity through the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master transcriptional factor for antioxidant genes. C57BL/6 or Nrf2−/− mice were fed a fish-oil diet for 3 weeks. Fish-oil diet significantly increased the expression of heme oxygenase-1 (HO-1), and endothelium-dependent vasodilation in the aorta of C57BL/6 mice, but not in the Nrf2−/− mice. Furthermore, we observed that 4-hydroxy hexenal (4-HHE), an end-product of n-3 PUFA peroxidation, was significantly increased in the aorta of C57BL/6 mice, accompanied by intra-aortic predominant increase in docosahexaenoic acid (DHA) rather than that in eicosapentaenoic acid (EPA). Human umbilical vein endothelial cells were incubated with DHA or EPA. We found that DHA, but not EPA, markedly increased intracellular 4-HHE, and nuclear expression and DNA binding of Nrf2. Both DHA and 4-HHE also increased the expressions of Nrf2 target genes including HO-1, and the siRNA of Nrf2 abolished these effects. Furthermore, DHA prevented oxidant-induced cellular damage or reactive oxygen species production, and these effects were disappeared by an HO-1 inhibitor or the siRNA of Nrf2. Thus, we found protective effects of DHA through Nrf2 activation in vascular tissue, accompanied by intra-vascular increases in 4-HHE, which may explain the mechanism of the cardioprotective effects of DHA.


Atherosclerosis | 2009

Soy phosphatidylcholine inhibited TLR4-mediated MCP-1 expression in vascular cells.

Atsushi Ishikado; Yoshihiko Nishio; Kazuko Yamane; Atsushi Mukose; Katsutaro Morino; Yoko Murakami; Osamu Sekine; Taketoshi Makino; Hiroshi Maegawa; Atsunori Kashiwagi

Inflammatory signaling via Toll-like receptor 4 (TLR4) has been shown to facilitate atherogenesis. Recent lines of evidence show that saturated fatty acids (SFAs) induce the inflammatory response via the TLR4 pathway in macrophages and adipocytes. The aims of this study are to confirm the role of SFAs in TLR4-mediated inflammatory signaling in vascular cells and to propose soy phosphatidylcholine (SPC) as an effective inhibitor against TLR4-mediated agonists. SFAs such as palmitate and stearate increased the expression and secretion of MCP-1 in human umbilical vein endothelial cells (HUVECs) and rat vascular smooth muscle cells (VSMCs). SFAs up-regulated the activity of MCP-1 promoter through the activation of NF-kappaB. Knockdown of TLR4 using siRNA diminished the SFA-induced MCP-1 expression in HUVECs and rat VSMCs, while PKC or ceramide signal inhibitor did not inhibit the expression. Furthermore, we found that SPC effectively inhibited the MCP-1 expression induced by palmitate or LPS in a dose-dependent manner. However, SPC did not inhibit the mRNA expression of MCP-1 induced by cytokines such as TNF-alpha and IL-1beta, or by agonists binding to TLRs other than TLR4. In addition, SPC did not affect the activity of LPS assessed by clotting activity of the Limulus amoebocyte lysate. These results clearly show that SPC specifically inhibits the inflammatory responses induced by the TLR4-dependent signal. In conclusion, we have demonstrated a role of SFAs for inflammatory response via TLR4-NF-kappaB signaling in vascular cells. Moreover, we propose that SPC can be useful as a selective inhibitor to suppress the TLR4-mediated inflammatory signaling.


Laboratory Investigation | 2010

Inhibitory effects of orally administrated liposomal bovine lactoferrin on the LPS-induced osteoclastogenesis

Eizo Yamano; Mutsumi Miyauchi; Hisako Furusyo; Aki Kawazoe; Atsushi Ishikado; Taketoshi Makino; Kazuo Tanne; Eiji Tanaka; Takashi Takata

Bovine lactoferrin (bLF) modulates the production of proinflammatory cytokines including tumor necrosis factor (TNF)-α, and may thus control alveolar bone destruction associated with periodontitis. In this study, the effects of bLF on mRNA expression in lipopolysaccharide (LPS)-stimulated osteoblasts (OBs) and on LPS-induced osteoclastogenesis were examined. The inhibitory effects of oral administration of liposomal-bLF (L-bLF), which improved the robustness of bLF to digestive enzymes, on alveolar bone resorption using LPS-induced periodontitis rat model are also reported. Three groups of 7-week-old male Wistar rats were treated with L-bLF (L-bLF group), bLF (bLF group), or the vehicle (control group) in drinking water (n=6 in each group). On day 7, LPS was topically applied into the gingival sulcus. Number of osteoclasts and immunoexpression of TNF-α were analyzed. The bLF inhibited the upregulation of TNF-α-mRNA- and upregulation of receptor activator of NFκB (RANKL)-mRNA expression and eliminated downregulation of osteoprotegerin (OPG)-mRNA expression in LPS-stimulated OBs and reduced LPS-induced osteoclastogenesis in co-culture with primary OBs and bone marrow cells. In the control group, the number of osteoclasts increased after LPS treatment. The number of osteoclasts that appeared along the alveolar bone margin was significantly reduced (P<0.01) in the L-bLF but not in the bLF group. Furthermore, L-bLF suppressed upregulation of TNF-α immunoexpression in periodontal tissue and TNF-α and interleukin (IL)-1β-mRNA level in gingival tissue. The results of this study indicate that oral administration of L-bLF significantly reduces alveolar bone resorption induced by LPS stimulation through inhibition of TNF-α production and modulation of RANKL/OPG balance in OBs. It is suggested that L-bLF could be a potent therapeutic and preventive agent for attenuating alveolar bone destruction in periodontitis patients.


Nature Medicine | 2017

Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction

Weier Qi; Hillary A. Keenan; Qian Li; Atsushi Ishikado; Aimo Kannt; Thorsten Sadowski; Mark A. Yorek; I-Hsien Wu; Samuel M. Lockhart; Lawrence J. Coppey; Anja Pfenninger; Chong Wee Liew; Guifen Qiang; Alison Burkart; Stephanie M. Hastings; David M. Pober; Christopher Cahill; Monika A. Niewczas; William J. Israelsen; Liane J. Tinsley; Isaac E. Stillman; Peter S. Amenta; Edward P. Feener; Matthew G. Vander Heiden; Robert Stanton; George L. King

Diabetic nephropathy (DN) is a major cause of end-stage renal disease, and therapeutic options for preventing its progression are limited. To identify novel therapeutic strategies, we studied protective factors for DN using proteomics on glomeruli from individuals with extreme duration of diabetes (ł50 years) without DN and those with histologic signs of DN. Enzymes in the glycolytic, sorbitol, methylglyoxal and mitochondrial pathways were elevated in individuals without DN. In particular, pyruvate kinase M2 (PKM2) expression and activity were upregulated. Mechanistically, we showed that hyperglycemia and diabetes decreased PKM2 tetramer formation and activity by sulfenylation in mouse glomeruli and cultured podocytes. Pkm-knockdown immortalized mouse podocytes had higher levels of toxic glucose metabolites, mitochondrial dysfunction and apoptosis. Podocyte-specific Pkm2-knockout (KO) mice with diabetes developed worse albuminuria and glomerular pathology. Conversely, we found that pharmacological activation of PKM2 by a small-molecule PKM2 activator, TEPP-46, reversed hyperglycemia-induced elevation in toxic glucose metabolites and mitochondrial dysfunction, partially by increasing glycolytic flux and PGC-1α mRNA in cultured podocytes. In intervention studies using DBA2/J and Nos3 (eNos) KO mouse models of diabetes, TEPP-46 treatment reversed metabolic abnormalities, mitochondrial dysfunction and kidney pathology. Thus, PKM2 activation may protect against DN by increasing glucose metabolic flux, inhibiting the production of toxic glucose metabolites and inducing mitochondrial biogenesis to restore mitochondrial function.


Journal of Biological Chemistry | 2012

Molecular mechanisms of the inhibitory effects of bovine lactoferrin on lipopolysaccharide-mediated osteoclastogenesis.

Toshihiro Inubushi; Aki Kawazoe; Mutsumi Miyauchi; Yasusei Kudo; Min Ao; Atsushi Ishikado; Taketoshi Makino; Takashi Takata

Background: We previously reported that bovine lactoferrin (bLF) reduces LPS-induced bone resorption. However, it was not clear how bLF inhibits LPS-mediated osteoclastogenesis through osteoblasts. Results: bLF impaired LPS-mediated NFκB activation by interfering with TNF receptor-associated factor 6 (TRAF6) polyubiquitination. Conclusion: bLF is a potent anti-inflammatory agent. Significance: bLF may hold promise as a therapeutic agent for inflammatory diseases associated with bone destruction. Lactoferrin (LF) is an important modulator of the immune response and inflammation. It has also been implicated in the regulation of bone tissue. In our previous study we demonstrated that bovine LF (bLF) reduces LPS-induced bone resorption through a reduction of TNF-α production in vivo. However, it was not known how bLF inhibits LPS-mediated TNF-α and RANKL (receptor activator of nuclear factor κB ligand) production in osteoblasts. In this study we show that bLF impairs LPS-mediated TNF-α and RANKL production. bLF inhibited LPS-mediated osteoclastogenesis via osteoblasts in a co-culture system. Furthermore, bLF pretreatment inhibited LPS-induced NFκB DNA binding activity as well as IκBα and IKKβ (IκB kinase β) phosphorylation. MAP kinase activation was also inhibited by bLF pretreatment. However, bLF pretreatment failed to block the degradation of IRAK1 (interleukin-1 receptor-associated kinase 1), which is an essential event after its activation. Remarkably, we found that bLF pretreatment inhibited LPS-mediated Lys-63-linked polyubiquitination of TNF receptor-associated factor 6 (TRAF6). We also found that bLF is mainly endocytosed through LRP1 (lipoprotein receptor-related protein-1) and intracellular distributed bLF binds to endogenous TRAF6. In addition, bLF inhibited IL-1β- and flagellin-induced TRAF6-dependent activation of the NFκB signaling pathway. Collectively, our findings demonstrate that bLF inhibits NFκB and MAP kinase activation, which play critical roles in chronic inflammatory disease by interfering with the TRAF6 polyubiquitination process. Thus, bLF could be a potent therapeutic agent for inflammatory diseases associated with bone destruction, such as periodontitis and rheumatoid arthritis.


Free Radical Biology and Medicine | 2013

Willow bark extract increases antioxidant enzymes and reduces oxidative stress through activation of Nrf2 in vascular endothelial cells and Caenorhabditis elegans

Atsushi Ishikado; Yoko Sono; Motonobu Matsumoto; Stacey Robida-Stubbs; Aya Okuno; Masashi Goto; George L. King; T. Keith Blackwell; Taketoshi Makino

Willow bark extract (WBE) is listed in the European Pharmacopoeia and has been traditionally used for treating fever, pain, and inflammation. Recent studies have demonstrated its clinical usefulness. This study investigated the antioxidative effects of WBE in human umbilical vein endothelial cells (HUVECs) and Caenorhabditis elegans. WBE prevented oxidative-stress-induced cytotoxicity of HUVECs and death of C. elegans. WBE dose-dependently increased mRNA and protein expression levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) target genes heme oxygenase-1, γ-glutamylcysteine ligase modifier and catalytic subunits, and p62 and intracellular glutathione (GSH) in HUVECs. In the nematode C. elegans, WBE increased the expression of the gcs-1::green fluorescent protein reporter, a well-characterized target of the Nrf2 ortholog SKN-1, in a manner that was SKN-1-dependent. WBE increased intranuclear expression and DNA binding of Nrf2 and the activity of an antioxidant response element (ARE) reporter plasmid in HUVECs. WBE-induced expression of Nrf2-regulated genes and increased GSH levels in HUVECs were reduced by Nrf2 and p38 small interfering (si) RNAs and by the p38-specific inhibitor SB203580. Nrf2 siRNA reduced the cytoprotective effect of WBE against oxidative stress in HUVECs. Salicin, a major anti-inflammatory ingredient of WBE, failed to activate ARE-luciferase activity, whereas a salicin-free WBE fraction showed intensive activity. WBE induced antioxidant enzymes and prevented oxidative stress through activation of Nrf2 independent of salicin, providing a new potential explanation for the clinical usefulness of WBE.


Nutrition Research | 2014

A high-fiber, low-fat diet improves periodontal disease markers in high-risk subjects: a pilot study

Keiko Kondo; Atsushi Ishikado; Katsutaro Morino; Yoshihiko Nishio; Satoshi Ugi; Sadae Kajiwara; Mika Kurihara; Hiromi Iwakawa; Keiko Nakao; Syoko Uesaki; Yasutami Shigeta; Hiromichi Imanaka; Takeshi Yoshizaki; Osamu Sekine; Taketoshi Makino; Hiroshi Maegawa; George L. King; Atsunori Kashiwagi

Periodontal disease is related to aging, smoking habits, diabetes mellitus, and systemic inflammation. However, there remains limited evidence about causality from intervention studies. An effective diet for prevention of periodontal disease has not been well established. The current study was an intervention study examining the effects of a high-fiber, low-fat diet on periodontal disease markers in high-risk subjects. Forty-seven volunteers were interviewed for recruitment into the study. Twenty-one volunteers with a body mass index of at least 25.0 kg/m(2) or with impaired glucose tolerance were enrolled in the study. After a 2- to 3-week run-in period, subjects were provided with a test meal consisting of high fiber and low fat (30 kcal/kg of ideal body weight) 3 times a day for 8 weeks and followed by a regular diet for 24 weeks. Four hundred twenty-five teeth from 17 subjects were analyzed. Periodontal disease markers assessed as probing depth (2.28 vs 2.21 vs 2.13 mm; P < .0001), clinical attachment loss (6.11 vs 6.06 vs 5.98 mm; P < .0001), and bleeding on probing (16.2 vs 13.2 vs 14.6 %; P = .005) showed significant reductions after the test-meal period, and these improvements persisted until the follow-up period. Body weight (P < .0001), HbA1c (P < .0001), and high-sensitivity C-reactive protein (P = .038) levels showed improvement after the test-meal period; they returned to baseline levels after the follow-up period. In conclusion, treatment with a high-fiber, low-fat diet for 8 weeks effectively improved periodontal disease markers as well as metabolic profiles, at least in part, by effects other than the reduction of total energy intake.


Metabolism-clinical and Experimental | 2014

A fish-based diet intervention improves endothelial function in postmenopausal women with type 2 diabetes mellitus: a randomized crossover trial.

Keiko Kondo; Katsutaro Morino; Yoshihiko Nishio; Motoyuki Kondo; Keiko Nakao; Fumiyuki Nakagawa; Atsushi Ishikado; Osamu Sekine; Takeshi Yoshizaki; Atsunori Kashiwagi; Satoshi Ugi; Hiroshi Maegawa

OBJECTIVE The beneficial effects of fish and n-3 polyunsaturated fatty acids (PUFAs) consumption on atherosclerosis have been reported in numerous epidemiological studies. However, to the best of our knowledge, the effects of a fish-based diet intervention on endothelial function have not been investigated. Therefore, we studied these effects in postmenopausal women with type 2 diabetes mellitus (T2DM). MATERIALS/METHODS Twenty-three postmenopausal women with T2DM were assigned to two four-week periods of either a fish-based diet (n-3 PUFAs ≧ 3.0 g/day) or a control diet in a randomized crossover design. Endothelial function was measured with reactive hyperemia using strain-gauge plethysmography and compared with the serum levels of fatty acids and their metabolites. Endothelial function was determined with peak forearm blood flow (Peak), duration of reactive hyperemia (Duration) and flow debt repayment (FDR). RESULTS A fish-based dietary intervention improved Peak by 63.7%, Duration by 27.9% and FDR by 70.7%, compared to the control diet. Serum n-3 PUFA levels increased after the fish-based diet period and decreased after the control diet, compared with the baseline (1.49 vs. 0.97 vs. 1.19 mmol/l, p < 0.0001). There was no correlation between serum n-3 PUFA levels and endothelial function. An increased ratio of epoxyeicosatrienoic acid/dihydroxyeicosatrienoic acid was observed after a fish-based diet intervention, possibly due to the inhibition of the activity of soluble epoxide hydrolase. CONCLUSIONS A fish-based dietary intervention improves endothelial function in postmenopausal women with T2DM. Dissociation between the serum n-3 PUFA concentration and endothelial function suggests that the other factors may contribute to this phenomenon.

Collaboration


Dive into the Atsushi Ishikado's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Maegawa

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar

Katsutaro Morino

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar

Osamu Sekine

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar

Satoshi Ugi

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atsunori Kashiwagi

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar

Fumiyuki Nakagawa

Shiga University of Medical Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge