Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fumiyuki Nakagawa is active.

Publication


Featured researches published by Fumiyuki Nakagawa.


Biochemical and Biophysical Research Communications | 2013

Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes

Chisato Kusunoki; Liu Yang; Takeshi Yoshizaki; Fumiyuki Nakagawa; Atsushi Ishikado; Motoyuki Kondo; Katsutaro Morino; Osamu Sekine; Satoshi Ugi; Yoshihiko Nishio; Atsunori Kashiwagi; Hiroshi Maegawa

Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid (ω3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of ω3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with ω3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). ω3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with ω3-PUFA prevented H(2)O(2)-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.


PLOS ONE | 2013

4-Hydroxy Hexenal Derived from Docosahexaenoic Acid Protects Endothelial Cells via Nrf2 Activation

Atsushi Ishikado; Katsutaro Morino; Yoshihiko Nishio; Fumiyuki Nakagawa; Atsushi Mukose; Yoko Sono; Nagisa Yoshioka; Keiko Kondo; Osamu Sekine; Takeshi Yoshizaki; Satoshi Ugi; Takashi Uzu; Hiromichi Kawai; Taketoshi Makino; Tomio Okamura; Masayuki Yamamoto; Atsunori Kashiwagi; Hiroshi Maegawa

Recent studies have proposed that n-3 polyunsaturated fatty acids (n-3 PUFAs) have direct antioxidant and anti-inflammatory effects in vascular tissue, explaining their cardioprotective effects. However, the molecular mechanisms are not yet fully understood. We tested whether n-3 PUFAs showed antioxidant activity through the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master transcriptional factor for antioxidant genes. C57BL/6 or Nrf2−/− mice were fed a fish-oil diet for 3 weeks. Fish-oil diet significantly increased the expression of heme oxygenase-1 (HO-1), and endothelium-dependent vasodilation in the aorta of C57BL/6 mice, but not in the Nrf2−/− mice. Furthermore, we observed that 4-hydroxy hexenal (4-HHE), an end-product of n-3 PUFA peroxidation, was significantly increased in the aorta of C57BL/6 mice, accompanied by intra-aortic predominant increase in docosahexaenoic acid (DHA) rather than that in eicosapentaenoic acid (EPA). Human umbilical vein endothelial cells were incubated with DHA or EPA. We found that DHA, but not EPA, markedly increased intracellular 4-HHE, and nuclear expression and DNA binding of Nrf2. Both DHA and 4-HHE also increased the expressions of Nrf2 target genes including HO-1, and the siRNA of Nrf2 abolished these effects. Furthermore, DHA prevented oxidant-induced cellular damage or reactive oxygen species production, and these effects were disappeared by an HO-1 inhibitor or the siRNA of Nrf2. Thus, we found protective effects of DHA through Nrf2 activation in vascular tissue, accompanied by intra-vascular increases in 4-HHE, which may explain the mechanism of the cardioprotective effects of DHA.


Metabolism-clinical and Experimental | 2014

A fish-based diet intervention improves endothelial function in postmenopausal women with type 2 diabetes mellitus: a randomized crossover trial.

Keiko Kondo; Katsutaro Morino; Yoshihiko Nishio; Motoyuki Kondo; Keiko Nakao; Fumiyuki Nakagawa; Atsushi Ishikado; Osamu Sekine; Takeshi Yoshizaki; Atsunori Kashiwagi; Satoshi Ugi; Hiroshi Maegawa

OBJECTIVE The beneficial effects of fish and n-3 polyunsaturated fatty acids (PUFAs) consumption on atherosclerosis have been reported in numerous epidemiological studies. However, to the best of our knowledge, the effects of a fish-based diet intervention on endothelial function have not been investigated. Therefore, we studied these effects in postmenopausal women with type 2 diabetes mellitus (T2DM). MATERIALS/METHODS Twenty-three postmenopausal women with T2DM were assigned to two four-week periods of either a fish-based diet (n-3 PUFAs ≧ 3.0 g/day) or a control diet in a randomized crossover design. Endothelial function was measured with reactive hyperemia using strain-gauge plethysmography and compared with the serum levels of fatty acids and their metabolites. Endothelial function was determined with peak forearm blood flow (Peak), duration of reactive hyperemia (Duration) and flow debt repayment (FDR). RESULTS A fish-based dietary intervention improved Peak by 63.7%, Duration by 27.9% and FDR by 70.7%, compared to the control diet. Serum n-3 PUFA levels increased after the fish-based diet period and decreased after the control diet, compared with the baseline (1.49 vs. 0.97 vs. 1.19 mmol/l, p < 0.0001). There was no correlation between serum n-3 PUFA levels and endothelial function. An increased ratio of epoxyeicosatrienoic acid/dihydroxyeicosatrienoic acid was observed after a fish-based diet intervention, possibly due to the inhibition of the activity of soluble epoxide hydrolase. CONCLUSIONS A fish-based dietary intervention improves endothelial function in postmenopausal women with T2DM. Dissociation between the serum n-3 PUFA concentration and endothelial function suggests that the other factors may contribute to this phenomenon.


Biochemical and Biophysical Research Communications | 2014

4-Hydroxy hexenal derived from dietary n-3 polyunsaturated fatty acids induces anti-oxidative enzyme heme oxygenase-1 in multiple organs.

Fumiyuki Nakagawa; Katsutaro Morino; Satoshi Ugi; Atsushi Ishikado; Keiko Kondo; Daisuke Sato; Shiho Konno; Ken-ichi Nemoto; Chisato Kusunoki; Osamu Sekine; Akihiro Sunagawa; Masanori Kawamura; Noriko Inoue; Yoshihiko Nishio; Hiroshi Maegawa

It has recently been reported that expression of heme oxygenase-1 (HO-1) plays a protective role against many diseases. Furthermore, n-3 polyunsaturated fatty acids (PUFAs) were shown to induce HO-1 expression in several cells in vitro, and in a few cases also in vivo. However, very few reports have demonstrated that n-3 PUFAs induce HO-1 in vivo. In this study, we examined the effect of fish-oil dietary supplementation on the distribution of fatty acids and their peroxidative metabolites and on the expression of HO-1 in multiple tissues (liver, kidney, heart, lung, spleen, intestine, skeletal muscle, white adipose, brown adipose, brain, aorta, and plasma) of C57BL/6 mice. Mice were divided into 4 groups, and fed a control, safflower-oil, and fish-oil diet for 3 weeks. One group was fed a fish-oil diet for just 1 week. The concentration of fatty acids, 4-hydroxy hexenal (4-HHE), and 4-hydroxy nonenal (4-HNE), and the expression of HO-1 mRNA were measured in the same tissues. We found that the concentration of 4-HHE (a product of n-3 PUFAs peroxidation) and expression of HO-1 mRNA were significantly increased after fish-oil treatment in most tissues. In addition, these increases were paralleled by an increase in the level of docosahexaenoic acid (DHA) but not eicosapentaenoic acid (EPA) in each tissue. These results are consistent with our previous results showing that DHA induces HO-1 expression through 4-HHE in vascular endothelial cells. In conclusion, we hypothesize that the HO-1-mediated protective effect of the fish oil diet may be through production of 4-HHE from DHA but not EPA in various tissues.


Free Radical Biology and Medicine | 2015

1-Methylnicotinamide ameliorates lipotoxicity-induced oxidative stress and cell death in kidney proximal tubular cells

Yuki Tanaka; Shinji Kume; Hisazumi Araki; Jun Nakazawa; Masami Chin-Kanasaki; Shin-ichi Araki; Fumiyuki Nakagawa; Daisuke Koya; Masakazu Haneda; Hiroshi Maegawa; Takashi Uzu

Free fatty acid-bound albumin (FFA-albumin)-related oxidative stress is involved in the pathogenesis of proximal tubular cell (PTC) damage and subsequent renal dysfunction in patients with refractory proteinuria. Nicotinamide adenine dinucleotide (NAD) metabolism has recently been focused on as a novel therapeutic target for several modern diseases, including diabetes. This study was designed to identify a novel molecule in NAD metabolism to protect PTCs from lipotoxicity-related oxidative stress. Among 19 candidate enzymes involved in mammalian NAD metabolism, the mRNA expression level of nicotinamide n-methyltransferase (NNMT) was significantly increased in both the kidneys of FFA-albumin-overloaded mice and cultured PTCs stimulated with palmitate-albumin. Knockdown of NNMT exacerbated palmitate-albumin-induced cell death in cultured PTCs, whereas overexpression of NNMT inhibited it. Intracellular concentration of 1-Methylnicotinamide (1-MNA), a metabolite of NNMT, increased and decreased in cultured NNMT-overexpressing and -knockdown PTCs, respectively. Treatment with 1-MNA inhibited palmitate-albumin-induced mitochondrial reactive oxygen species generation and cell death in cultured PTCs. Furthermore, oral administration of 1-MNA ameliorated oxidative stress, apoptosis, necrosis, inflammation, and fibrosis in the kidneys of FFA-albumin-overloaded mice. In conclusion, NNMT-derived 1-MNA can reduce lipotoxicity-mediated oxidative stress and cell damage in PTCs. Supplementation of 1-MNA may have potential as a new therapy in patients with refractory proteinuria.


PLOS ONE | 2017

Fiber-rich diet with brown rice improves endothelial function in type 2 diabetes mellitus: A randomized controlled trial

Keiko Kondo; Katsutaro Morino; Yoshihiko Nishio; Atsushi Ishikado; Hisatomi Arima; Keiko Nakao; Fumiyuki Nakagawa; Fumio Nikami; Osamu Sekine; Ken-ichi Nemoto; Makoto Suwa; Motonobu Matsumoto; Katsuyuki Miura; Taketoshi Makino; Satoshi Ugi; Hiroshi Maegawa; Giuseppe Danilo Norata

Background & Aims A fiber-rich diet has a cardioprotective effect, but the mechanism for this remains unclear. We hypothesized that a fiber-rich diet with brown rice improves endothelial function in patients with type 2 diabetes mellitus. Methods Twenty-eight patients with type 2 diabetes mellitus at a single general hospital in Japan were randomly assigned to a brown rice (n = 14) or white rice (n = 14) diet and were followed for 8 weeks. The primary outcome was changes in endothelial function determined from flow debt repayment by reactive hyperemia using strain-gauge plethysmography in the fasting state. Secondary outcomes were changes in HbA1c, postprandial glucose excursions, and markers of oxidative stress and inflammation. The area under the curve for glucose after ingesting 250 kcal of assigned rice was compared between baseline (T0) and at the end of the intervention (T1) to estimate glucose excursions in each group. Results Improvement in endothelial function, assessed by fasting flow debt repayment (20.4% vs. −5.8%, p = 0.004), was significantly greater in the brown rice diet group than the white rice diet group, although the between-group difference in change of fiber intake was small (5.6 g/day vs. −1.2 g/day, p<0.0001). Changes in total, HDL-, and LDL-cholesterol, and urine 8-isoprostane levels did not differ between the two groups. The high-sensitivity C-reactive protein level tended to improve in the brown rice diet group compared with the white rice diet group (0.01 μg/L vs. −0.04 μg/L, p = 0.063). The area under the curve for glucose was subtly but consistently lower in the brown rice diet group (T0: 21.4 mmol/L*h vs. 24.0 mmol/L*h, p = 0.043, T1: 20.4 mmol/L*h vs. 23.3 mmol/L*h, p = 0.046) without changes in HbA1c. Conclusions Intervention with a fiber-rich diet with brown rice effectively improved endothelial function, without changes in HbA1c levels, possibly through reducing glucose excursions.


PLOS ONE | 2014

Long-Term Low Carbohydrate Diet Leads to Deleterious Metabolic Manifestations in Diabetic Mice

Keiko Handa; Kouichi Inukai; Hirohisa Onuma; Akihiko Kudo; Fumiyuki Nakagawa; Kazue Tsugawa; Atsuko Kitahara; Rie Moriya; Kazuto Takahashi; Yoshikazu Sumitani; Toshio Hosaka; Hayato Kawakami; Seiichi Oyadomari; Hitoshi Ishida

We investigated long-term effects of low carbohydrate diets on wild type mice, streptozotocin-injected and KKAy obese diabetic mice. These mice were pair-fed three different types of diets, standard chow (SC, C∶P∶F = 63∶15∶22), a low carbohydrate (LC, C∶P∶F = 38∶25∶37) diet and a severely carbohydrate restricted (SR, C∶P∶F = 18∶45∶37) diet for 16 weeks. Despite comparable body weights and serum lipid profiles, wild type and diabetic mice fed the low carbohydrate diets exhibited lower insulin sensitivity and this reduction was dependent on the amount of carbohydrate in the diet. When serum fatty acid compositions were investigated, monounsaturation capacity, i.e. C16:1/C16:0 and C18:1/C18:0, was impaired in all murine models fed the low carbohydrate diets, consistent with the decreased expression of hepatic stearoyl-CoA desaturase-1 (SCD1). Interestingly, both the hepatic expressions and serum levels of fibroblast growth factor 21 (FGF21), which might be related to longevity, were markedly decreased in both wild type and KKAy mice fed the SR diet. Taking into consideration that fat compositions did not differ between the LC and SR diets, we conclude that low carbohydrate diets have deleterious metabolic effects in both wild type and diabetic mice, which may explain the association between diets relatively low in carbohydrate and the elevated risk of cardiovascular events observed in clinical studies.


Nutrients | 2015

Duality of n-3 Polyunsaturated Fatty Acids on Mcp-1 Expression in Vascular Smooth Muscle: A Potential Role of 4-Hydroxy Hexenal

Kohji Nagayama; Katsutaro Morino; Osamu Sekine; Fumiyuki Nakagawa; Atsushi Ishikado; Hirotaka Iwasaki; Takashi Okada; Masashi Tawa; Daisuke Sato; Takeshi Imamura; Yoshihiko Nishio; Satoshi Ugi; Atsunori Kashiwagi; Tomio Okamura; Hiroshi Maegawa

N-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have protective effects against atherosclerosis. Monocyte chemotactic protein (MCP)-1 is a major inflammatory mediator in the progression of atherosclerosis. However, little is known about the regulation of Mcp-1 by DHA and EPA in vessels and vascular smooth muscle cells (VSMCs). In this study, we compared the effect of DHA and EPA on the expression of Mcp-1 in rat arterial strips and rat VSMCs. DHA, but not EPA, suppressed Mcp-1 expression in arterial strips. Furthermore, DHA generated 4-hydroxy hexenal (4-HHE), an end product of n-3 polyunsaturated fatty acids (PUFAs), in arterial strips as measured by liquid chromatography-tandem mass spectrometry. In addition, 4-HHE treatment suppressed Mcp-1 expression in arterial strips, suggesting 4-HHE derived from DHA may be involved in the mechanism of this phenomenon. In contrast, Mcp-1 expression was stimulated by DHA, EPA and 4-HHE through p38 kinase and the Keap1-Nuclear factor erythroid-derived 2-like 2 (Nrf2) pathway in VSMCs. In conclusion, there is a dual effect of n-3 PUFAs on the regulation of Mcp-1 expression. Further study is necessary to elucidate the pathological role of this phenomenon.


Nutrients | 2017

N-3 Polyunsaturated Fatty Acids Decrease the Protein Expression of Soluble Epoxide Hydrolase via Oxidative Stress-Induced P38 Kinase in Rat Endothelial Cells

Takashi Okada; Katsutaro Morino; Fumiyuki Nakagawa; Masashi Tawa; Keiko Kondo; Osamu Sekine; Takeshi Imamura; Tomio Okamura; Satoshi Ugi; Hiroshi Maegawa

N-3 polyunsaturated fatty acids (PUFAs) improve endothelial function. The arachidonic acid-derived metabolites (epoxyeicosatrienoic acids (EETs)) are part of the endothelial hyperpolarization factor and are vasodilators independent of nitric oxide. However, little is known regarding the regulation of EET concentration by docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in blood vessels. Sprague-Dawley rats were fed either a control or fish oil diet for 3 weeks. Compared with the control, the fish oil diet improved acetylcholine-induced vasodilation and reduced the protein expression of soluble epoxide hydrolase (sEH), a key EET metabolic enzyme, in aortic strips. Both DHA and EPA suppressed sEH protein expression in rat aorta endothelial cells (RAECs). Furthermore, the concentration of 4-hydroxy hexenal (4-HHE), a lipid peroxidation product of n-3 PUFAs, increased in n-3 PUFA-treated RAECs. In addition, 4-HHE treatment suppressed sEH expression in RAECs, suggesting that 4-HHE (derived from n-3 PUFAs) is involved in this phenomenon. The suppression of sEH was attenuated by the p38 kinase inhibitor (SB203580) and by treatment with the antioxidant N-acetyl-L-cysteine. In conclusion, sEH expression decreased after n-3 PUFAs treatment, potentially through oxidative stress and p38 kinase. Mild oxidative stress induced by n-3 PUFAs may contribute to their cardio-protective effect.


International Journal of Molecular Sciences | 2017

Acute Effect of Metformin on Postprandial Hypertriglyceridemia through Delayed Gastric Emptying

Daisuke Sato; Katsutaro Morino; Fumiyuki Nakagawa; Koichiro Murata; Osamu Sekine; Fumiaki Beppu; Naohiro Gotoh; Satoshi Ugi; Hiroshi Maegawa

Postprandial hypertriglyceridemia is a potential target for cardiovascular disease prevention in patients with diabetic dyslipidemia. Metformin has been reported to reduce plasma triglyceride concentrations in the postprandial states. However, little is known about the mechanisms underlying the triglyceride-lowering effect of metformin. Here, we examined the effects of metformin on lipid metabolism after olive oil-loading in 129S mice fed a high fat diet for three weeks. Metformin administration (250 mg/kg) for one week decreased postprandial plasma triglycerides. Pre-administration (250 mg/kg) of metformin resulted in a stronger triglyceride-lowering effect (approximately 45% lower area under the curve) than post-administration. A single administration (250 mg/kg) of metformin lowered plasma postprandial triglycerides comparably to administration for one week, suggesting an acute effect of metformin on postprandial hypertriglyceridemia. To explore whole body lipid metabolism after fat-loading, stomach size, fat absorption in the intestine, and fat oxidation (13C/12C ratio in expired CO2 after administration of glyceryl-1-13C tripalmitate) were measured with and without metformin (250 mg/kg) pre-treatment. In metformin-treated mice, larger stomach size, lower fat oxidation, and no change in lipid absorption were observed. In conclusion, metformin administration before fat loading reduced postprandial hypertriglyceridemia, most likely by delaying gastric emptying.

Collaboration


Dive into the Fumiyuki Nakagawa's collaboration.

Top Co-Authors

Avatar

Hiroshi Maegawa

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar

Katsutaro Morino

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar

Osamu Sekine

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar

Satoshi Ugi

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar

Atsushi Ishikado

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keiko Kondo

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar

Atsunori Kashiwagi

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge