Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Audrey Sabbagh is active.

Publication


Featured researches published by Audrey Sabbagh.


The FASEB Journal | 2011

ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS

Eric Pasmant; Audrey Sabbagh; Michel Vidaud; Ivan Bièche

A large noncoding RNA called ANRIL (for antisense noncoding RNA in the INK4 locus) has been identified within the p15/CDKN2B‐p16/CDKN2A‐p14/ARF gene cluster. While the exact role of ANRIL awaited further elucidation, common disease genome‐wide association studies (GWAS) have surprisingly identified the ANRIL gene as a genetic susceptibility locus shared associated by coronary disease, intracranial aneurysm and also type 2 diabetes. Expression studies have confirmed the coregulation of p15/CDKN2B, p16/CDKN2A’, p14/ARF, and ANRIL. Among the cluster, ANRIL expression showed the strongest association with the multiple phenotypes linked to the 9p21.3 region. More recent GWAS also identified ANRIL as a risk locus for gliomas and basal cell carcinomas in accordance with the princeps observation. Moreover’ a mouse model has confirmed the pivotal role of ANRIL in regulation of CDKN2A/B expression through a cis‐acting mechanism and its implication in proliferation and senescence. The implication of ANRIL in cellular aging has provided an attractive unifying hypothesis to explain its association with various susceptibility risk factors. ANRIL identification emphasizes the underestimated role of long noncoding RNAs. Many GWAS have identified trait‐associated SNPs that felt in non‐coding genomic regions. It is conceivable to anticipate that long’ noncoding RNAs will map to many of these “gene deserts.”—Pasmant, E., Sabbagh, A., Vidaud, M., Bieche, I. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J. 25, 444–448 (2011). www.fasebj.org


Gut | 2007

Liver gene expression signature to predict response to pegylated interferon plus ribavirin combination therapy in patients with chronic hepatitis C

Tarik Asselah; Ivan Bièche; Stéphanie Narguet; Audrey Sabbagh; Ingrid Laurendeau; Marie-Pierre Ripault; Nathalie Boyer; Michèle Martinot-Peignoux; Dominique Valla; Michel Vidaud; Patrick Marcellin

Background and Aims: The gold standard treatment of chronic hepatitis C (CHC) is combined pegylated interferon and ribavirin. Considering side effects and treatment cost, prediction of treatment response before therapy is important. The aim of this study was to identify a liver gene signature to predict sustained virological response in patients with CHC. Methods: Group A (training set) comprised 40 patients with CHC including 14 non-responders (NRs) and 26 sustained virological responders (SVRs). Group B (validation set) comprised 29 patients including 9 NRs and 20 SVRs. Eleven responder–relapsers were also included. A total of 58 genes associated with liver gene expression dysregulation during CHC were selected from the literature. Real-time quantitative RT-PCR assays were used to analyse the mRNA expression of these 58 selected genes in liver biopsy specimens taken from the patients before treatment. Results: From the Group A data, three genes whose expression was significantly increased in NRs compared with SVRs were identified: IFI-6-16/G1P3, IFI27 and ISG15/G1P2. These three genes also showed significant differences in their expression profiles between NRs and SVRs in the independent sample (Group B). Supervised class prediction analysis identified a two-gene (IFI27 and CXCL9) signature, which accurately predicted treatment response in 79.3% (23/29) of patients from the validation set (Group B), with a predictive accuracy of 100% (9/9) and of 70% (14/20) in NRs and SVRs, respectively. The expression profiles of responder–relapsers did not differ significantly from those of NRs and SVRs, and 73% (8/11) of them were predicted as SVRs with the two-gene classifier. Conclusion: NRs and SVRs have different liver gene expression profiles before treatment. The most notable changes occurred mainly in interferon-stimulated genes. Treatment response could be predicted with a two-gene signature (IFI27 and CXCL9).


Human Mutation | 2010

NF1 microdeletions in neurofibromatosis type 1: from genotype to phenotype

Eric Pasmant; Audrey Sabbagh; Gillian Spurlock; Ingrid Laurendeau; Elisa Grillo; Marie-José Hamel; Ludovic Martin; S. Barbarot; Bruno Leheup; Diana Rodriguez; Didier Lacombe; Hélène Dollfus; Laurent Pasquier; Bertrand Isidor; Salah Ferkal; Jean Soulier; Marc Sanson; Anne Dieux-Coeslier; Ivan Bièche; Béatrice Parfait; Michel Vidaud; P. Wolkenstein; Meena Upadhyaya; Dominique Vidaud

In 5‐10% of patients, neurofibromatosis type 1 (NF1) results from microdeletions that encompass the entire NF1 gene and a variable number of flanking genes. Two recurrent microdeletion types are found in most cases, with microdeletion breakpoints located in paralogous regions flanking NF1 (proximal NF1‐REP‐a and distal NF1‐REP–c for the 1.4 Mb type‐1 microdeletion, and SUZ12 and SUZ12P for the 1.2 Mb type‐2 microdeletion). A more severe phenotype is usually associated with NF1 microdeletion patients than in those with intragenic mutations. We characterized NF1 microdeletions in 70 unrelated NF1 microdeleted patients using a high‐resolution NF1 custom array comparative genomic hybridization (CGH). Genotype‐phenotype correlations were studied in 58 of these microdeletion patients and compared to 389 patients with intragenic truncating NF1 mutations and phenotyped in the same standardized way. Our results confirmed in an unbiased manner the existence of a contiguous gene syndrome with a significantly higher incidence of learning disabilities and facial dysmorphism in microdeleted patients compared to patients with intragenic NF1 mutations. Microdeleted NF1 patients also showed a trend toward significance for childhood overgrowth. High‐resolution array‐CGH identified a new recurrent ∼1.0 Mb microdeletion type, designated as type‐3, with breakpoints in the paralogous regions middle NF1‐REP‐b and distal NF1‐REP–c.


Gut | 2009

Gene expression and hepatitis C virus infection

Tarik Asselah; Ivan Bièche; Audrey Sabbagh; Pierre Bedossa; Richard Moreau; Dominique Valla; Michel Vidaud; Patrick Marcellin

Hepatitis C virus (HCV) is a major cause of chronic liver disease, with about 170 million people infected worldwide. Up to 70% of patients will have persistent infection after inoculation, making this disease a significant cause of morbidity and mortality. The severity of disease varies widely, from asymptomatic chronic infection to cirrhosis and hepatocellular carcinoma. Since the discovery of HCV, the treatment of hepatitis C has considerably improved. Recently, combination of pegylated interferons with ribavirin gives a response rate of about 55%. Treatment is indicated in patients with moderate or severe fibrosis. The tolerability of combination treatment is relatively poor, with a frequent flu-like syndrome and an impaired quality of life. In addition to viral and environmental behavioural factors, host genetic diversity is believed to contribute to the spectrum of clinical outcomes in HCV infection. The sequencing of the human genome, together with the development of high-throughput technologies that measure the function of the genome, have afforded unique opportunities to develop profiles that can distinguish, identify and classify discrete subsets of disease, predict the disease outcome or predict the response to treatment. This paper reviews the published literature on gene expression associated with HCV infection (HCV infection, fibrosis progression), and also according to response to treatment.


Human Molecular Genetics | 2009

Unravelling the genetic basis of variable clinical expression in neurofibromatosis 1

Audrey Sabbagh; Eric Pasmant; Ingrid Laurendeau; Béatrice Parfait; S. Barbarot; Bernard Guillot; Patrick Combemale; Salah Ferkal; Michel Vidaud; Patrick Aubourg; Dominique Vidaud; P. Wolkenstein

Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder which displays considerable inter- and intra-familial variability in phenotypic expression. To evaluate the genetic component of variable expressivity in NF1, we examined the phenotypic correlations between affected relatives in 750 NF1 patients from 275 multiplex families collected through the NF-France Network. Twelve NF1-related clinical features, including five quantitative traits (number of café-au-lait spots of small size and of large size, and number of cutaneous, subcutaneous and plexiform neurofibromas) and seven binary ones, were scored. All clinical features studied, with the exception of neoplasms, showed significant familial aggregation after adjusting for age and sex. For most of them, patterns of familial correlations indicated a strong genetic component with no apparent influence of the constitutional NF1 mutation. Heritability estimates of the five quantitative traits ranged from 0.26 to 0.62. Moreover, we investigated for the first time the role of the normal NF1 allele in the variable expression of NF1 through a family-based association study. Nine tag SNPs in NF1 were genotyped in 1132 individuals from 313 NF1 families. No significant deviations of transmission of any of the NF1 variants to affected offspring was found for any of the 12 clinical features examined, based on single marker or haplotype analysis. Taken together, our results provided evidence that genetic modifiers, unlinked to the NF1 locus, contribute to the variable expressivity of the disease.


BMC Genetics | 2008

Worldwide distribution of NAT2 diversity: Implications for NAT2 evolutionary history

Audrey Sabbagh; André Langaney; Pierre Darlu; Nathalie Gérard; Rajagopal Krishnamoorthy; Estella S. Poloni

BackgroundThe N-acetyltransferase 2 (NAT2) gene plays a crucial role in the metabolism of many drugs and xenobiotics. As it represents a likely target of population-specific selection pressures, we fully sequenced the NAT2 coding region in 97 Mandenka individuals from Senegal, and compared these sequences to extant data on other African populations. The Mandenka data were further included in a worldwide dataset composed of 41 published population samples (6,727 individuals) from four continental regions that were adequately genotyped for all common NAT2 variants so as to provide further insights into the worldwide haplotype diversity and population structure at NAT2.ResultsThe sequencing analysis of the NAT2 gene in the Mandenka sample revealed twelve polymorphic sites in the coding exon (two of which are newly identified mutations, C345T and C638T), defining 16 haplotypes. High diversity and no molecular signal of departure from neutrality were observed in this West African sample. On the basis of the worldwide genotyping survey dataset, we found a strong genetic structure differentiating East Asians from both Europeans and sub-Saharan Africans. This pattern could result from region- or population-specific selective pressures acting at this locus, as further suggested in the HapMap data by extremely high values of FST for a few SNPs positions in the NAT2 coding exon (T341C, C481T and A803G) in comparison to the empirical distribution of FST values accross the whole 400-kb region of the NAT gene family.ConclusionPatterns of sequence variation at NAT2 are consistent with selective neutrality in all sub-Saharan African populations investigated, whereas the high level of population differentiation between Europeans and East Asians inferred from SNPs could suggest population-specific selective pressures acting at this locus, probably caused by differences in diet or exposure to other environmental signals.


Journal of Medical Genetics | 2009

SPRED1 germline mutations caused a neurofibromatosis type 1 overlapping phenotype

Eric Pasmant; Audrey Sabbagh; Nadine Hanna; Julien Masliah-Planchon; Emilie Jolly; Philippe Goussard; Paola Ballerini; François Cartault; S. Barbarot; Judith Landman-Parker; Nadem Soufir; Béatrice Parfait; Michel Vidaud; Pierre Wolkenstein; Dominique Vidaud

Objective: Germline loss-of-function mutations in the SPRED1 gene have recently been identified in patients fulfilling the National Institutes of Health (NIH) diagnostic criteria for neurofibromatosis type 1 (NF1) but with no NF1 (neurofibromin 1) mutation found, suggesting a neurofibromatosis type 1-like syndrome. Methods: 61 index cases with NF1 clinical diagnosis but no identifiable NF1 mutation were screened for SPRED1 mutation. Results: We describe one known SPRED1 mutation (c.190C>T leading to p.Arg64Stop) and four novel mutations (c.637C>T leading to p.Gln213Stop, c.2T>C leading to p.Met1Thr, c.46C>T leading to p.Arg16Stop, and c.1048_1060del leading to p.Gly350fs) in five French families. Their NF1-like phenotype was characterised by a high prevalence of café-au-lait spots, freckling, learning disability, and an absence of neurofibromas and Lisch nodules in agreement with the original description. However, we did not observe Noonan-like dysmorphy. It is noteworthy that one patient with the p.Arg16Stop mutation developed a monoblastic acute leukaemia. Conclusions: In our series, SPRED1 mutations occurred with a prevalence of 0.5% in NF1 patients and in 5% of NF1 patients displaying an NF1-like phenotype. SPRED1 mutated patients did not display any specific dermatologic features that were not present in NF1 patients, except for the absence of neurofibromas that seem to be a specific clinical feature of NF1. The exact phenotypic spectrum and the putative complications of this NF1 overlapping syndrome, in particular haematological malignancies, remain to be further characterised. NIH diagnostic criteria for NF1 must be revised in view of this newly characterised Legius syndrome in order to establish a specific genetic counselling.


Journal of the National Cancer Institute | 2011

Role of Noncoding RNA ANRIL in Genesis of Plexiform Neurofibromas in Neurofibromatosis Type 1

Eric Pasmant; Audrey Sabbagh; Julien Masliah-Planchon; Nicolas Ortonne; Ingrid Laurendeau; Lucie Melin; Salah Ferkal; Lucie Hernandez; Karen Leroy; Laurence Valeyrie-Allanore; Béatrice Parfait; Dominique Vidaud; Ivan Bièche; Laurent Lantieri; Pierre Wolkenstein; Michel Vidaud

BACKGROUND Neurofibromatosis type 1 (NF1) is a tumor predisposition syndrome with a worldwide birth incidence of one in 2500. Genetic factors unrelated to the NF1 locus are thought to influence the number of plexiform neurofibromas (PNFs) in patients with NF1, but no factors have been identified to date. METHODS We used high-resolution array comparative genomic hybridization of tissue from 22 PNFs obtained from 18 NF1 patients to identify modifier genes involved in PNF development. We used a family-based association test for five previously identified cancer-susceptibility tag single-nucleotide polymorphisms (rs1063192, rs2151280, rs2218220, rs10757257, and rs7023329) located in chromosomal region 9p21.3 in 1105 subjects (740 NF1 patients and 365 non-affected relatives) from 306 families. To confirm the functional role of rs2151280, we used real-time quantitative reverse transcription-polymerase chain reaction to analyze the expression of cyclin-dependent kinase inhibitor 2A (CDKN2A), CDKN2B, alternate reading frame (ARF), and antisense noncoding RNA in the INK4 locus (ANRIL) in the peripheral blood of 124 NF1 patients. Relationships between CDKN2A, CDKN2B, ARF, and ANRIL expression and the rs2151280 genotype were tested by the Kruskal-Wallis test. All statistical tests were two-sided. RESULTS In NF1-associated PNFs, 9p21.3 deletions (including the CDKN2A/B-ANRIL locus) were found as the only recurrent somatic alterations. Single-nucleotide polymorphism rs2151280 (located in ANRIL) was statistically significantly associated with the number of PNFs (P < .001) in NF1 patients. In addition, allele T of rs2151280 was statistically significantly associated with reduced ANRIL transcript levels (P < .001), suggesting that modulation of ANRIL expression mediates PNF susceptibility. CONCLUSION Identification of ANRIL as a modifier gene in NF1 may offer clues to the molecular pathogenesis of PNFs, particularly neurofibroma formation, and emphasizes the unanticipated role of large noncoding RNA in activation of critical regulators of tumor development.


PLOS ONE | 2011

Arylamine N-acetyltransferase 2 (NAT2) genetic diversity and traditional subsistence: a worldwide population survey.

Audrey Sabbagh; Pierre Darlu; Brigitte Crouau-Roy; Estella S. Poloni

Arylamine N-acetyltransferase 2 (NAT2) is involved in human physiological responses to a variety of xenobiotic compounds, including common therapeutic drugs and exogenous chemicals present in the diet and the environment. Many questions remain about the evolutionary mechanisms that have led to the high prevalence of slow acetylators in the human species. Evidence from recent surveys of NAT2 gene variation suggests that NAT2 slow-causing variants might have become targets of positive selection as a consequence of the shift in modes of subsistence and lifestyle in human populations in the last 10,000 years. We aimed to test more extensively the hypothesis that slow acetylation prevalence in humans is related to the subsistence strategy adopted by the past populations. To this end, published frequency data on the most relevant genetic variants of NAT2 were collected from 128 population samples (14,679 individuals) representing different subsistence modes and dietary habits, allowing a thorough analysis at both a worldwide and continent scale. A significantly higher prevalence of the slow acetylation phenotype was observed in populations practicing farming (45.4%) and herding (48.2%) as compared to populations mostly relying on hunting and gathering (22.4%) (P = 0.0007). This was closely mirrored by the frequency of the slow 590A variant that was found to occur at a three-fold higher frequency in food producers (25%) as compared to hunter-gatherers (8%). These findings are consistent with the hypothesis that the Neolithic transition to subsistence economies based on agricultural and pastoral resources modified the selective regime affecting the NAT2 acetylation pathway. Furthermore, the vast amount of data collected enabled us to provide a comprehensive and up-to-date description of NAT2 worldwide genetic diversity, thus building up a useful resource of frequency data for further studies interested in epidemiological or anthropological research questions involving NAT2.


Human Mutation | 2013

NF1 Molecular Characterization and Neurofibromatosis Type I Genotype–Phenotype Correlation: The French Experience

Audrey Sabbagh; Eric Pasmant; Apolline Imbard; Armelle Luscan; Magali Soares; Hélène Blanché; Ingrid Laurendeau; Salah Ferkal; Michel Vidaud; Stéphane Pinson; Christine Bellanné-Chantelot; Dominique Vidaud; Béatrice Parfait; P. Wolkenstein

Neurofibromatosis type 1 (NF1) affects about one in 3,500 people in all ethnic groups. Most NF1 patients have private loss‐of‐function mutations scattered along the NF1 gene. Here, we present an original NF1 investigation strategy and report a comprehensive mutation analysis of 565 unrelated patients from the NF‐France Network. A NF1 mutation was identified in 546 of the 565 patients, giving a mutation detection rate of 97%. The combined cDNA/DNA approach showed that a significant proportion of NF1 missense mutations (30%) were deleterious by affecting pre‐mRNA splicing. Multiplex ligation‐dependent probe amplification allowed the identification of restricted rearrangements that would have been missed if only sequencing or microsatellite analysis had been performed. In four unrelated families, we identified two distinct NF1 mutations within the same family. This fortuitous association points out the need to perform an exhaustive NF1 screening in the case of molecular discordant‐related patients. A genotype–phenotype study was performed in patients harboring a truncating (N = 368), in‐frame splicing (N = 36), or missense (N = 35) mutation. The association analysis of these mutation types with 12 common NF1 clinical features confirmed a weak contribution of the allelic heterogeneity of the NF1 mutation to the NF1 variable expressivity.

Collaboration


Dive into the Audrey Sabbagh's collaboration.

Top Co-Authors

Avatar

André Garcia

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Vidaud

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

David Courtin

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Eric Pasmant

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Jacqueline Milet

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Béatrice Parfait

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Ingrid Laurendeau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge