Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where August Albert Muench is active.

Publication


Featured researches published by August Albert Muench.


The Astrophysical Journal | 2002

The Luminosity and Mass Function of the Trapezium Cluster: From B Stars to the Deuterium-burning Limit

August Albert Muench; Elizabeth A. Lada; Charles J. Lada; J. Alves

We use the results of a new multiepoch, multiwavelength, near-infrared census of the Trapezium cluster in Orion to construct and analyze the structure of its infrared (K-band) luminosity function. Specifically, we employ an improved set of model luminosity functions to derive this clusters underlying initial mass function (IMF) across the entire range of mass from OB stars to substellar objects down to near the deuterium-burning limit. We derive an IMF for the Trapezium cluster that rises with decreasing mass, having a Salpeter-like IMF slope until near ~0.6 M☉ where the IMF flattens and forms a broad peak extending to the hydrogen-burning limit, below which the IMF declines into the substellar regime. Independent of the details, we find that substellar objects account for no more than ~22% of the total number of likely cluster members. Further, the substellar Trapezium IMF breaks from a steady power-law decline and forms a significant secondary peak at the lowest masses (10-20 times the mass of Jupiter). This secondary peak may contain as many as ~30% of the substellar objects in the cluster. Below this substellar IMF peak, our K-band luminosity function (KLF) modeling requires a subsequent sharp decline toward the planetary mass regime. Lastly, we investigate the robustness of pre-main-sequence luminosity evolution as predicted by current evolutionary models, and we discuss possible origins for the IMF of brown dwarfs.


Astrophysical Journal Supplement Series | 2005

Chandra Orion Ultradeep Project: Observations and Source Lists

Konstantin V. Getman; E. Flaccomio; Patrick S. Broos; N. Grosso; Masahiro Tsujimoto; Leisa K. Townsley; Gordon Garmire; Joel H. Kastner; Jingqiang Li; Frank Harnden; Scott J. Wolk; Stephen S. Murray; Charles J. Lada; August Albert Muench; Mark J. McCaughrean; Gwendolyn Meeus; F. Damiani; G. Micela; S. Sciortino; John Bally; Lynne A. Hillenbrand; William Herbst; Thomas Preibisch; Eric D. Feigelson

We present a description of the data reduction methods and the derived catalog of more than 1600 X-ray point sources from the exceptionally deep 2003 January Chandra X-Ray Observatory (Chandra) observation of the Orion Nebula Cluster and embedded populations around OMC-1. The observation was obtained with Chandras Advanced CCD Imaging Spectrometer (ACIS) and has been nicknamed the Chandra Orion Ultradeep Project (COUP). With an 838 ks exposure made over a continuous period of 13.2 days, the COUP observation provides the most uniform and comprehensive data set on the X-ray emission of normal stars ever obtained in the history of X-ray astronomy.


The Astronomical Journal | 2006

SPITZER OBSERVATIONS OF IC 348: THE DISK POPULATION AT 2-3 MILLION YEARS

Charles J. Lada; August Albert Muench; K. L. Luhman; Lori E. Allen; Lee Hartmann; Tom Megeath; Philip C. Myers; Giovanni G. Fazio; Kenneth Wood; James Muzerolle; G. H. Rieke; Nick Siegler; Erick T. Young

We present near- and mid-infrared photometry obtained with the Spitzer Space Telescope of ~300 known members of the IC 348 cluster. We merge this photometry with existing ground-based optical and near-infrared photometry in order to construct optical-infrared spectral energy distributions (SEDs) for all the cluster members and present a complete atlas of these SEDs. We employ these observations to investigate both the frequency and nature of the circumstellar disk population in the cluster. The Spitzer observations span a wavelength range between 3.6 and 24 μm, corresponding to disk radii of ~0.1-5 AU from the central star. The observations are sufficiently sensitive to enable the first detailed measurement of the disk frequency for very low mass stars at the peak of the stellar initial mass function. Using measurements of infrared excess between 3.6 and 8.0 μm, we find the total frequency of disk-bearing stars in the cluster to be 50% ± 6%. However, only 30% ± 4% of the member stars are surrounded by optically thick, primordial disks, while the remaining disk-bearing stars are surrounded by what appear to be optically thin, anemic disks. Both these values are below previous estimates for this cluster. The disk fraction appears to be a function of spectral type and stellar mass. The fraction of stars with optically thick disks ranges from 11% ± 8% for stars earlier than K6 to 47% ± 12% for K6-M2 stars to 28% ± 5% for M2-M6 stars. The disk longevity and thus conditions for planet formation appear to be most favorable for the K6-M2 stars, which are objects of comparable mass to the Sun for the age of this cluster. The optically thick disks around later type (>M4) stars appear to be less flared than the disks around earlier type stars. This may indicate a greater degree of dust settling and a more advanced evolutionary state for the late M disk population. Finally, we find that the presence of an optically thick dust disk is correlated with gaseous accretion, as measured by the strength of Hα emission. A large fraction of stars classified as classical T Tauri stars possess robust, optically thick disks, and very few such stars are found to be diskless. The majority (64%) of stars classified as weak-lined T Tauri stars are found to be diskless. However, a significant fraction (12%) of these stars are found to be surrounded by thick, primordial disks. These results suggest that it is more likely for dust disks to persist in the absence of active gaseous accretion than for active accretion to persist in the absence of dusty disks.


The Astronomical Journal | 2006

Ubvri light curves of 44 type ia supernovae

Saurabh W. Jha; Robert P. Kirshner; Peter M. Challis; Peter Marcus Garnavich; Thomas Matheson; Alicia M. Soderberg; Genevieve J. Graves; Malcolm Stuart Hicken; J. Alves; Hector G. Arce; Zoltan Balog; Pauline Barmby; Elizabeth J. Barton; Perry L. Berlind; Ann E. Bragg; César A. Briceño; Warren R. Brown; James H. Buckley; Nelson Caldwell; Michael L. Calkins; Barbara J. Carter; Kristi Dendy Concannon; R. Hank Donnelly; Kristoffer A. Eriksen; Daniel G. Fabricant; Emilio E. Falco; F. Fiore; M. R. Garcia; Mercedes Gomez; Norman A. Grogin

We present UBVRI photometry of 44 Type Ia supernovae (SNe Ia) observed from 1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The data set comprises 2190 observations and is the largest homogeneously observed and reduced sample of SNe Ia to date, nearly doubling the number of well-observed, nearby SNe Ia with published multicolor CCD light curves. The large sample of U-band photometry is a unique addition, with important connections to SNe Ia observed at high redshift. The decline rate of SN Ia U-band light curves correlates well with the decline rate in other bands, as does the U - B color at maximum light. However, the U-band peak magnitudes show an increased dispersion relative to other bands even after accounting for extinction and decline rate, amounting to an additional ~40% intrinsic scatter compared to the B band.


The Astrophysical Journal | 2008

THE NATURE OF THE DENSE CORE POPULATION IN THE PIPE NEBULA : THERMAL CORES UNDER PRESSURE

Charles J. Lada; August Albert Muench; Jill Rathborne; J. Alves; M. Lombardi

In this paper we present the results of a systematic investigation of an entire population of predominately starless dust cores within a single molecular cloud, the Pipe Nebula. Analysis of extinction data shows the cores to be dense objects characterized by a narrow range of density with a median value of -->n(H2) = 7 ? 103. The nonthermal velocity dispersions measured in molecular emission lines are found to be subsonic for the large majority of the cores and show no correlation with core mass (or size). Thermal pressure is found to be the dominate source of internal gas pressure and support for most of the core population. The total internal pressures of the cores are found to be roughly independent of core mass over the entire (0.2-20 M?) range of the core mass function (CMF) indicating that the cores are in pressure equilibrium with an external source of pressure. This external pressure is most likely provided by the weight of the surrounding molecular cloud. Most of the cores appear to be pressure confined, gravitationally unbound entities whose fundamental physical properties are determined by only a few factors, which include self-gravity, gas temperature, and the simple requirement of pressure equilibrium with the surrounding environment. The entire core population is found to be characterized by a single critical Bonnor-Ebert mass of approximately 2 M?. This mass coincides with the characteristic mass of the Pipe CMF suggesting that the CMF (and ultimately the stellar IMF) has its origin in the physical process of thermal fragmentation in a pressurized medium.


The Astronomical Journal | 2000

Infrared L-Band Observations of the Trapezium Cluster: A Census of Circumstellar Disks and Candidate Protostars

Charles J. Lada; August Albert Muench; Karl E. Haisch; Elizabeth A. Lada; J. Alves; Eric V. Tollestrup; S. P. Willner

We report the results of a sensitive near-infrared JHKL imaging survey of the Trapezium cluster in Orion. We use the JHKL colors to obtain a census of infrared excess stars in the cluster. Of (391) stars brighter than 12th magnitude in the K and L bands, 80% ± 7% are found to exhibit detectable infrared excess on the J-H, K-L color-color diagram. Examination of a subsample of 285 of these stars with published spectral types yields a slightly higher infrared excess fraction of 85%. We find that 97% of the optical proplyds in the cluster exhibit excess in the JHKL color-color diagram indicating that the most likely origin of the observed infrared excesses is from circumstellar disks. We interpret these results to indicate that the fraction of stars in the cluster with circumstellar disks is between 80%–85%, confirming earlier published suggestions of a high disk fraction for this young cluster. Moreover, we find that the probability of finding an infrared excess around a star is independent of stellar mass over essentially the entire range of the stellar mass function down to the hydrogen burning limit. Consequently, the vast majority of stars in the Trapezium cluster appear to have been born with circumstellar disks and the potential to subsequently form planetary systems, despite formation within the environment of a rich and dense stellar cluster. We identify 78 stars in our sample characterized by K-L colors suggestive of deeply embedded objects. The spatial distribution of these objects differs from that of the rest of the cluster members and is similar to that of the dense molecular cloud ridge behind the cluster. About half of these objects are detected in the short wavelength (J and H) bands, and these are found to be characterized by extreme infrared excess. This suggests that many of these sources could be protostellar in nature. If even a modest fraction (i.e., ~50%) of these objects are protostars, then star formation could be continuing in the molecular ridge at a rate comparable to that which produced the foreground Trapezium cluster.


The Astrophysical Journal | 2001

Evidence for Circumstellar Disks around Young Brown Dwarfs in the Trapezium Cluster

August Albert Muench; J. Alves; Charles J. Lada; Elizabeth A. Lada

We report the results of deep infrared observations of brown dwarf candidates in the Trapezium Cluster in Orion. Analysis of the JHK color-color diagram indicates that a large fraction (~65% ± 15%) of the observed sources exhibit infrared-excess emission. This suggests the extreme youth of these objects and, in turn, provides strong independent confirmation of the existence of a large population of substellar objects in the cluster. Moreover, this suggests that the majority of these substellar objects are presently surrounded by circumstellar disks similar to the situation for the stellar population of the cluster. This evidence for a high initial disk frequency (>50%) around cluster members of all masses, combined with the smooth continuity of the clusters initial mass function across the hydrogen-burning limit, suggests that a single physical mechanism is likely responsible for producing the entire cluster mass spectrum down to near the deuterium-burning limit. The results may also indicate that even substellar objects are capable of forming with systems of planetary companions.


The Astronomical Journal | 2007

A Spitzer Census of the IC 348 Nebula

August Albert Muench; Charles J. Lada; K. L. Luhman; James Muzerolle; Erick T. Young

Spitzer mid-infrared surveys enable an accurate census of young stellar objects by sampling large spatial scales, revealing very embedded protostars, and detecting low-luminosity objects. Taking advantage of these capabilities, we present a Spitzer-based census of the IC 348 nebula and embedded star cluster, covering a 2.5 pc region and comparable in extent to the Orion Nebula. Our Spitzer census supplemented with ground-based spectra has added 42 Class II T Tauri sources to the cluster membership and identified ~20 Class 0/I protostars. The population of IC 348 likely exceeds 400 sources after accounting statistically for unidentified diskless members. Our Spitzer census of IC 348 reveals a population of Class I protostars that is anticorrelated spatially with the Class II/III T Tauri members, which comprise the centrally condensed cluster around a B star. The protostars are instead found mostly at the cluster periphery about ~1 pc from the B star and spread out along a filamentary ridge. We further find that the star formation rate in this protostellar ridge is consistent with that rate which built the older exposed cluster, while the presence of 15 cold, starless, millimeter cores intermingled with this protostellar population indicates that the IC 348 nebula has yet to finish forming stars. Moreover, we show that the IC 348 cluster is of order 3-5 crossing times old, and, as evidenced by its smooth radial profile and confirmed mass segregation, is likely relaxed. While it seems apparent that the current cluster configuration is the result of dynamical evolution and its primordial structure has been erased, our finding of a filamentary ridge of Class I protostars supports a model in which embedded clusters are built up from numerous smaller subclusters. Finally, the results of our Spitzer census indicate that the supposition that star formation must progress rapidly in a dark cloud should not preclude these observations that show it can be relatively long lived.


The Astronomical Journal | 2003

A Study of the Luminosity and Mass Functions of the Young IC 348 Cluster Using FLAMINGOS Wide-Field Near-Infrared Images

August Albert Muench; Elizabeth A. Lada; Charles J. Lada; Richard Elston; J. Alves; M. Horrobin; T. H. Huard; Joanna Lisa Levine; S. N. Raines; Carlos G. Román-Zúñiga

We present wide-field near-infrared (JHK) images of the young, τ = 2 Myr IC 348 cluster taken with FLAMINGOS. We use these new data to construct an infrared census of sources, which is sensitive enough to detect a 10 Jup brown dwarf seen through an extinction of AV ~ 7. We examine the clusters structure and relationship to the molecular cloud and to construct the clusters K-band luminosity function. Using our model luminosity function algorithm, we derive the clusters initial mass function (IMF) throughout the stellar and substellar regimes and find that the IC 348 IMF is very similar to that found for the Trapezium cluster, with both cluster IMFs having a mode between 0.2–0.08 ⊙. In particular, we find that, similar to our results for the Trapezium, brown dwarfs constitute only one in four of the sources in the IC 348 cluster. We show that a modest secondary peak forms in the substellar IC 348 K-band luminosity function (KLF), corresponding to the same mass range responsible for a similar KLF peak found in the Trapezium. We interpret this KLF peak as either evidence for a corresponding secondary IMF peak at the deuterium burning limit or as arising from a feature in the substellar mass-luminosity relation that is not predicted by current theoretical models. Finally, we find that IC 348 displays radial variations of its subsolar (0.5–0.08 ⊙) IMF on a parsec scale. Whatever mechanism that is breaking the universality of the IMF on small spatial scales in IC 348 does not appear to be acting on the brown dwarf population, whose relative size does not vary with distance from the cluster center.


The Astrophysical Journal | 2009

DENSE CORES IN THE PIPE NEBULA: AN IMPROVED CORE MASS FUNCTION

Jill Rathborne; Charles J. Lada; August Albert Muench; J.F. Alves; Jouni Kainulainen; M. Lombardi

In this paper we derive an improved core mass function (CMF) for the Pipe Nebula from a detailed comparison between measurements of visual extinction and molecular-line emission. We have compiled a refined sample of 201 dense cores toward the Pipe Nebula using a 2-dimensional threshold identification algorithm informed by recent simulations of dense core populations. Measurements of radial velocities using complimentary C18O (1-0) observations enable us to cull out from this sample those 43 extinction peaks that are either not associated with dense gas or are not physically associated with the Pipe Nebula. Moreover, we use the derived C18O, central velocities to differentiate between single cores with internal structure and blends of two or more physically distinct cores, superposed along the same line-of-sight. We then are able to produce a more robust dense core sample for future follow-up studies and a more reliable CMF than was possible previously. We confirm earlier indications that the CMF for the Pipe Nebula departs from a single power-law like form with a break or knee at M ~ 2.7 +/- 1.3 Msun. Moreover, we also confirm that the CMF exhibits a similar shape to the stellar IMF, but is scaled to higher masses by a factor of ~4.5. We interpret this difference in scaling to be a measure of the star formation efficiency (22 +/- 8%). This supports earlier suggestions that the stellar IMF may originate more or less directly from the CMF.

Collaboration


Dive into the August Albert Muench's collaboration.

Top Co-Authors

Avatar

Charles J. Lada

Association of Universities for Research in Astronomy

View shared research outputs
Top Co-Authors

Avatar

J. Alves

University of Vienna

View shared research outputs
Top Co-Authors

Avatar

James Muzerolle

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

K. L. Luhman

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge