Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Augusto C. Montezano is active.

Publication


Featured researches published by Augusto C. Montezano.


American Journal of Physiology-renal Physiology | 2010

Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy

Mona Sedeek; Glaucia E. Callera; Augusto C. Montezano; Alexey Gutsol; Freddy Heitz; Cedric Szyndralewiez; Patrick Page; Chris R. J. Kennedy; Kevin D. Burns; Rhian M. Touyz; Richard L. Hébert

Molecular mechanisms underlying renal complications of diabetes remain unclear. We tested whether renal NADPH oxidase (Nox) 4 contributes to increased reactive oxygen species (ROS) generation and hyperactivation of redox-sensitive signaling pathways in diabetic nephropathy. Diabetic mice (db/db) (20 wk) and cultured mouse proximal tubule (MPT) cells exposed to high glucose (25 mmol/l, D-glucose) were studied. Expression (gene and protein) of Nox4, p22(phox), and p47(phox), but not Nox1 or Nox2, was increased in kidney cortex, but not medulla, from db/db vs. control mice (db/m) (P < 0.05). ROS generation, p38 mitogen-activated protein (MAP) kinase phosphorylation, and content of fibronectin and transforming growth factor (TGF)-β1/2 were increased in db/db vs. db/m (P < 0.01). High glucose increased expression of Nox4, but not other Noxes vs. normal glucose (P < 0.05). This was associated with increased NADPH oxidase activation and enhanced ROS production. Nox4 downregulation by small-interfering RNA and inhibition of Nox4 activity by GK-136901 (Nox1/4 inhibitor) attenuated d-glucose-induced NADPH oxidase-derived ROS generation. High d-glucose, but not l-glucose, stimulated phosphorylation of p38MAP kinase and increased expression of TGF-β1/2 and fibronectin, effects that were inhibited by SB-203580 (p38MAP kinase inhibitor). GK-136901 inhibited d-glucose-induced actions. Our data indicate that, in diabetic conditions: 1) renal Nox4 is upregulated in a cortex-specific manner, 2) MPT cells possess functionally active Nox4-based NADPH, 3) Nox4 is a major source of renal ROS, and 4) activation of profibrotic processes is mediated via Nox4-sensitive, p38MAP kinase-dependent pathways. These findings implicate Nox4-based NADPH oxidase in molecular mechanisms underlying fibrosis in type 2 diabetic nephropathy.


Circulation | 2013

NADPH Oxidase 1 Plays a Key Role in Diabetes Mellitus–Accelerated Atherosclerosis

Stephen P. Gray; Elyse Di Marco; Jun Okabe; Cedric Szyndralewiez; Freddy Heitz; Augusto C. Montezano; Judy B. de Haan; Christine Koulis; Assam El-Osta; Karen L. Andrews; Jaye Chin-Dusting; Rhian M. Touyz; Kirstin Wingler; Mark E. Cooper; Harald Schmidt; Karin Jandeleit-Dahm

Background— In diabetes mellitus, vascular complications such as atherosclerosis are a major cause of death. The key underlying pathomechanisms are unclear. However, hyperglycemic oxidative stress derived from NADPH oxidase (Nox), the only known dedicated enzyme to generate reactive oxygen species appears to play a role. Here we identify the Nox1 isoform as playing a key and pharmacologically targetable role in the accelerated development of diabetic atherosclerosis. Methods and Results— Human aortic endothelial cells exposed to hyperglycemic conditions showed increased expression of Nox1, oxidative stress, and proinflammatory markers in a Nox1-siRNA reversible manner. Similarly, the specific Nox inhibitor, GKT137831, prevented oxidative stress in response to hyperglycemia in human aortic endothelial cells. To examine these observations in vivo, we investigated the role of Nox1 on plaque development in apolipoprotein E–deficient mice 10 weeks after induction of diabetes mellitus. Deletion of Nox1, but not Nox4, had a profound antiatherosclerotic effect correlating with reduced reactive oxygen species formation, attenuation of chemokine expression, vascular adhesion of leukocytes, macrophage infiltration, and reduced expression of proinflammatory and profibrotic markers. Similarly, treatment of diabetic apolipoprotein E–deficient mice with GKT137831 attenuated atherosclerosis development. Conclusions— These studies identify a major pathological role for Nox1 and suggest that Nox1-dependent oxidative stress is a promising target for diabetic vasculopathies, including atherosclerosis.


Circulation | 2013

Nox1 Plays a Key Role in Diabetes Accelerated Atherosclerosis

Stephen P. Gray; Elyse Di Marco; Jun Okabe; Cedric Szyndralewiez; Freddy Heitz; Augusto C. Montezano; Judy B. de Haan; Christine Koulis; Assam El-Osta; Karen L. Andrews; Jaye Chin-Dusting; Rhian M. Touyz; Kirstin Wingler; Mark E. Cooper; Harald Schmidt; Karin Jandeleit-Dahm

Background— In diabetes mellitus, vascular complications such as atherosclerosis are a major cause of death. The key underlying pathomechanisms are unclear. However, hyperglycemic oxidative stress derived from NADPH oxidase (Nox), the only known dedicated enzyme to generate reactive oxygen species appears to play a role. Here we identify the Nox1 isoform as playing a key and pharmacologically targetable role in the accelerated development of diabetic atherosclerosis. Methods and Results— Human aortic endothelial cells exposed to hyperglycemic conditions showed increased expression of Nox1, oxidative stress, and proinflammatory markers in a Nox1-siRNA reversible manner. Similarly, the specific Nox inhibitor, GKT137831, prevented oxidative stress in response to hyperglycemia in human aortic endothelial cells. To examine these observations in vivo, we investigated the role of Nox1 on plaque development in apolipoprotein E–deficient mice 10 weeks after induction of diabetes mellitus. Deletion of Nox1, but not Nox4, had a profound antiatherosclerotic effect correlating with reduced reactive oxygen species formation, attenuation of chemokine expression, vascular adhesion of leukocytes, macrophage infiltration, and reduced expression of proinflammatory and profibrotic markers. Similarly, treatment of diabetic apolipoprotein E–deficient mice with GKT137831 attenuated atherosclerosis development. Conclusions— These studies identify a major pathological role for Nox1 and suggest that Nox1-dependent oxidative stress is a promising target for diabetic vasculopathies, including atherosclerosis.


Clinical Science | 2013

Microparticles: biomarkers and beyond

Dylan Burger; Sarah C. Schock; Charlie S. Thompson; Augusto C. Montezano; Antoine M. Hakim; Rhian M. Touyz

Membrane microparticles are submicron fragments of membrane shed into extracellular space from cells under conditions of stress/injury. They may be distinguished from other classes of extracellular vesicles (i.e. exosomes) on the basis of size, content and mechanism of formation. Microparticles are found in plasma and other biological fluids from healthy individuals and their levels are altered in various diseases, including diabetes, chronic kidney disease, pre-eclampsia and hypertension among others. Accordingly, they have been considered biomarkers of vascular injury and pro-thrombotic or pro-inflammatory conditions. In addition to this, emerging evidence suggests that microparticles are not simply a consequence of disease, but that they themselves may contribute to pathological processes. Thus microparticles appear to serve as both markers and mediators of pathology. The present review examines the evidence for microparticles as both biomarkers of, and contributors to, the progression of disease. Approaches for the detection of microparticles are summarized and novel concepts relating to the formation of microparticles and their biological effects are examined.


Antioxidants & Redox Signaling | 2013

Angiotensin II, NADPH oxidase, and redox signaling in the vasculature.

Aurelie Nguyen Dinh Cat; Augusto C. Montezano; Dylan Burger; Rhian M. Touyz

SIGNIFICANCE Angiotensin II (Ang II) influences the function of many cell types and regulates many organ systems, in large part through redox-sensitive processes. In the vascular system, Ang II is a potent vasoconstrictor and also promotes inflammation, hypertrophy, and fibrosis, which are important in vascular damage and remodeling in cardiovascular diseases. The diverse actions of Ang II are mediated via Ang II type 1 and Ang II type 2 receptors, which couple to various signaling molecules, including NADPH oxidase (Nox), which generates reactive oxygen species (ROS). ROS are now recognized as signaling molecules, critically placed in pathways activated by Ang II. Mechanisms linking Nox and Ang II are complex and not fully understood. RECENT ADVANCES Ang II regulates vascular cell production of ROS through various recently characterized Noxs, including Nox1, Nox2, Nox4, and Nox5. Activation of these Noxs leads to ROS generation, which in turn influences many downstream signaling targets of Ang II, including MAP kinases, RhoA/Rho kinase, transcription factors, protein tyrosine phosphatases, and tyrosine kinases. Activation of these redox-sensitive pathways regulates vascular cell growth, inflammation, contraction, and senescence. CRITICAL ISSUES Although there is much evidence indicating a role for Nox/ROS in Ang II function, there is still a paucity of information on how Ang II exerts cell-specific effects through ROS and how Nox isoforms are differentially regulated by Ang II. Moreover, exact mechanisms whereby ROS induce oxidative modifications of signaling molecules mediating Ang II actions remain elusive. FUTURE DIRECTIONS Future research should elucidate these issues to better understand the significance of Ang II and ROS in vascular (patho) biology.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Aldosterone and Angiotensin II Synergistically Stimulate Migration in Vascular Smooth Muscle Cells Through c-Src-Regulated Redox-Sensitive RhoA Pathways

Augusto C. Montezano; Glaucia E. Callera; Alvaro Yogi; Ying He; Rita C. Tostes; Gang He; Ernesto L. Schiffrin; Rhian M. Touyz

Objective—Synergistic interactions between aldosterone (Aldo) and angiotensin II (Ang II) have been implicated in vascular inflammation, fibrosis, and remodeling. Molecular mechanisms underlying this are unclear. We tested the hypothesis that c-Src activation, through receptor tyrosine kinase transactivation, is critically involved in synergistic interactions between Aldo and Ang II and that it is upstream of promigratory signaling pathways in vascular smooth muscle cells (VSMCs). Methods and Results—VSMCs from WKY rats were studied. At low concentrations (10−10 mol/L) Aldo and Ang II alone did not influence c-Src activation, whereas in combination they rapidly increased phosphorylation (P<0.01), an effect blocked by eplerenone (Aldo receptor antagonist) and irbesartan (AT1R blocker). This synergism was attenuated by AG1478 and AG1296 (inhibitors of EGFR and PDGFR, respectively), but not by AG1024 (IGFR inhibitor). Aldo and Ang II costimulation induced c-Src–dependent activation of NAD(P)H oxidase and c-Src–independent activation of ERK1/2 (P<0.05), without effect on ERK5, p38MAPK, or JNK. Aldo/Ang II synergistically activated RhoA/Rho kinase and VSMC migration, effects blocked by PP2, apocynin, and fasudil, inhibitors of c-Src, NADPH oxidase, and Rho kinase, respectively. Conclusions—Aldo/Ang II synergistically activate c-Src, an immediate signaling response, through EGFR and PDGFR, but not IGFR transactivation. This is associated with activation of redox-regulated RhoA/Rho kinase, which controls VSMC migration. Although Aldo and Ang II interact to stimulate ERK1/2, such effects are c-Src–independent. These findings indicate differential signaling in Aldo-Ang II crosstalk and highlight the importance of c-Src in redox-sensitive RhoA, but not ERK1/2 signaling. Blockade of Aldo/Ang II may be therapeutically useful in vascular remodeling associated with abnormal VSMC migration.


Basic & Clinical Pharmacology & Toxicology | 2012

Reactive Oxygen Species and Endothelial Function – Role of Nitric Oxide Synthase Uncoupling and Nox Family Nicotinamide Adenine Dinucleotide Phosphate Oxidases

Augusto C. Montezano; Rhian M. Touyz

The healthy endothelium prevents platelet aggregation and leucocyte adhesion, controls permeability to plasma components and maintains vascular integrity. Damage to the endothelium promotes endothelial dysfunction characterized by: altered endothelium-mediated vasodilation, increased vascular reactivity, platelet aggregation, thrombus formation, increased permeability, leucocyte adhesion and monocyte migration. Molecular processes contributing to these phenomena include increased expression of adhesion molecules, synthesis of pro-inflammatory and pro-thrombotic factors and increased endothelin-1 secretion. Decreased nitric oxide bioavailability and increased generation of reactive oxygen species (ROS) are among the major molecular changes associated with endothelial dysfunction. A critical source of endothelial ROS is a family of non-phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, including the prototypic Nox2-based NADPH oxidases, Nox1, Nox4 and Nox5. Other possible sources include mitochondrial electron transport enzymes, xanthine oxidase, cyclooxygenase, lipoxygenase and uncoupled nitric oxide synthase (NOS). Cross-talk between ROS-generating enzymes, such as mitochondrial oxidases and Noxs, is increasingly implicated in cellular ROS production. The present review discusses the importance of endothelial ROS in health and disease and focuses on the major ROS-generating systems in the endothelium, namely uncoupled endothelial nitric oxide synthase and NADPH oxidases.


Canadian Journal of Cardiology | 2012

Molecular Mechanisms of Hypertension—Reactive Oxygen Species and Antioxidants: A Basic Science Update for the Clinician

Augusto C. Montezano; Rhian M. Touyz

Many factors have been implicated in the pathophysiology of hypertension such as upregulation of the renin-angiotensin-aldosterone system, activation of the sympathetic nervous system, perturbed G protein-coupled receptor signalling, inflammation, and altered T-cell function. Common to these processes is increased bioavailability of reactive oxygen species (ROS) (termed oxidative stress) due to excess ROS generation, decreased nitric oxide (NO) levels, and reduced antioxidant capacity in the cardiovascular, renal, and nervous systems. Although oxidative stress may not be the sole etiology of hypertension, it amplifies blood pressure elevation in the presence of other prohypertensive factors. In the cardiovascular system ROS play a physiological role in controlling endothelial function, vascular tone, and cardiac function, and a pathophysiological role in inflammation, hypertrophy, proliferation, apoptosis, migration, fibrosis, angiogenesis, and rarefaction, all of which are important processes contributing to endothelial dysfunction and cardiovascular remodelling in hypertension. A major source for cardiovascular ROS is a family of nonphagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox1, Nox2, Nox4, and Nox5). Other sources include mitochondrial enzymes, xanthine oxidase, and uncoupled NO synthase (NOS). Although convincing data from animal studies support a causative role for oxidative stress in the pathogenesis of hypertension, there is still no solid evidence that oxidative stress causes hypertension in humans. However, biomarkers of excess ROS are increased in patients with hypertension and oxidative damage is important in the molecular mechanisms associated with cardiovascular and renal injury in hypertension. Although clinical trials failed to show beneficial antihypertensive effects of antioxidants, strategies that combat oxidative stress by targeting Noxs in an isoform-specific manner may have therapeutic potential.


Antioxidants & Redox Signaling | 2014

Reactive Oxygen Species, Vascular Noxs, and Hypertension: Focus on Translational and Clinical Research

Augusto C. Montezano; Rhian M. Touyz

SIGNIFICANCE Reactive oxygen species (ROS) are signaling molecules that are important in physiological processes, including host defense, aging, and cellular homeostasis. Increased ROS bioavailability and altered redox signaling (oxidative stress) have been implicated in the onset and/or progression of chronic diseases, including hypertension. RECENT ADVANCES Although oxidative stress may not be the only cause of hypertension, it amplifies blood pressure elevation in the presence of other pro-hypertensive factors, such as salt loading, activation of the renin-angiotensin-aldosterone system, and sympathetic hyperactivity, at least in experimental models. A major source for ROS in the cardiovascular-renal system is a family of nicotinamide adenine dinucleotide phosphate oxidases (Noxs), including the prototypic Nox2-based Nox, and Nox family members: Nox1, Nox4, and Nox5. CRITICAL ISSUES Although extensive experimental data support a role for increased ROS levels and altered redox signaling in the pathogenesis of hypertension, the role in clinical hypertension is unclear, as a direct causative role of ROS in blood pressure elevation has yet to be demonstrated in humans. Nevertheless, what is becoming increasingly evident is that abnormal ROS regulation and aberrant signaling through redox-sensitive pathways are important in the pathophysiological processes which is associated with vascular injury and target-organ damage in hypertension. FUTURE DIRECTIONS There is a paucity of clinical information related to the mechanisms of oxidative stress and blood pressure elevation, and a few assays accurately measure ROS directly in patients. Such further ROS research is needed in humans and in the development of adequately validated analytical methods to accurately assess oxidative stress in the clinic.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Endothelial Microparticle Formation by Angiotensin II Is Mediated via Ang II Receptor Type I/NADPH Oxidase/ Rho Kinase Pathways Targeted to Lipid Rafts

Dylan Burger; Augusto C. Montezano; Nobuhiro Nishigaki; Ying He; Anthony Carter; Rhian M. Touyz

Objective—Circulating microparticles are increased in cardiovascular disease and may themselves promote oxidative stress and inflammation. Molecular mechanisms underlying their formation and signaling are unclear. We investigated the role of reactive oxygen species (ROS), Rho kinase, and lipid rafts in microparticle formation and examined their functional significance in endothelial cells (ECs). Methods and Results—Microparticle formation from angiotensin II (Ang II)–stimulated ECs and apolipoprotein E−/− mice was assessed by annexin V or by CD144 staining and electron microscopy. Ang II promoted microparticle formation and increased EC generation and Rho kinase activity. Ang II–stimulated effects were inhibited by irbesartan (Ang II receptor type I blocker) and fasudil (Rho kinase inhibitor). Methyl-&bgr;-cyclodextrin and nystatin, which disrupt lipid rafts/caveolae, blocked microparticle release. Functional responses, assessed in microparticle-stimulated ECs, revealed increased production, enhanced vascular cell adhesion molecule/platelet-EC adhesion molecule expression, and augmented macrophage adhesion. Inhibition of epidermal growth factor receptor blocked the prooxidative and proinflammatory effects of microparticles. In vitro observations were confirmed in apolipoprotein E−/− mice, which displayed vascular inflammation and high levels of circulating endothelial microparticles, effects that were reduced by apocynin. Conclusion—We demonstrated direct actions of Ang II on endothelial microparticle release, mediated through NADPH oxidase, ROS, and Rho kinase targeted to lipid rafts. Microparticles themselves stimulated endothelial ROS formation and inflammatory responses. Our findings suggest a feedforward system whereby Ang II promotes EC injury through its own endothelial-derived microparticles.

Collaboration


Dive into the Augusto C. Montezano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying He

University of Ottawa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita C. Tostes

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rheure A Lopes

University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge