Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisco J. Rios is active.

Publication


Featured researches published by Francisco J. Rios.


Current Hypertension Reports | 2014

Angiotensin II and Vascular Injury

Augusto C. Montezano; Aurelie Nguyen Dinh Cat; Francisco J. Rios; Rhian M. Touyz

Vascular injury, characterized by endothelial dysfunction, structural remodelling, inflammation and fibrosis, plays an important role in cardiovascular diseases. Cellular processes underlying this include altered vascular smooth muscle cell (VSMC) growth/apoptosis, fibrosis, increased contractility and vascular calcification. Associated with these events is VSMC differentiation and phenotypic switching from a contractile to a proliferative/secretory phenotype. Inflammation, associated with macrophage infiltration and increased expression of redox-sensitive pro-inflammatory genes, also contributes to vascular remodelling. Among the many factors involved in vascular injury is Ang II. Ang II, previously thought to be the sole biologically active downstream peptide of the renin-angiotensin system (RAS), is converted to smaller peptides, [Ang III, Ang IV, Ang-(1-7)], that are functional and that modulate vascular tone and structure. The actions of Ang II are mediated via signalling pathways activated upon binding to AT1R and AT2R. AT1R activation induces effects through PLC-IP3-DAG, MAP kinases, tyrosine kinases, tyrosine phosphatases and RhoA/Rho kinase. Ang II elicits many of its (patho)physiological actions by stimulating reactive oxygen species (ROS) generation through activation of vascular NAD(P)H oxidase (Nox). ROS in turn influence redox-sensitive signalling molecules. Here we discuss the role of Ang II in vascular injury, focusing on molecular mechanisms and cellular processes. Implications in vascular remodelling, inflammation, calcification and atherosclerosis are highlighted.


Canadian Journal of Cardiology | 2016

Vascular Fibrosis in Aging and Hypertension: Molecular Mechanisms and Clinical Implications

Adam Harvey; Augusto C. Montezano; Rheure A Lopes; Francisco J. Rios; Rhian M. Touyz

Aging is the primary risk factor underlying hypertension and incident cardiovascular disease. With aging, the vasculature undergoes structural and functional changes characterized by endothelial dysfunction, wall thickening, reduced distensibility, and arterial stiffening. Vascular stiffness results from fibrosis and extracellular matrix (ECM) remodelling, processes that are associated with aging and are amplified by hypertension. Some recently characterized molecular mechanisms underlying these processes include increased expression and activation of matrix metalloproteinases, activation of transforming growth factor-β1/SMAD signalling, upregulation of galectin-3, and activation of proinflammatory and profibrotic signalling pathways. These events can be induced by vasoactive agents, such as angiotensin II, endothelin-1, and aldosterone, which are increased in the vasculature during aging and hypertension. Complex interplay between the “aging process” and prohypertensive factors results in accelerated vascular remodelling and fibrosis and increased arterial stiffness, which is typically observed in hypertension. Because the vascular phenotype in a young hypertensive individual resembles that of an elderly otherwise healthy individual, the notion of “early” or “premature” vascular aging is now often used to describe hypertension-associated vascular disease. We review the vascular phenotype in aging and hypertension, focusing on arterial stiffness and vascular remodelling. We also highlight the clinical implications of these processes and discuss some novel molecular mechanisms of fibrosis and ECM reorganization.


Canadian Journal of Cardiology | 2014

Hypertension Due to Antiangiogenic Cancer Therapy With Vascular Endothelial Growth Factor Inhibitors: Understanding and Managing a New Syndrome

Heather Yvonne Small; Augusto C. Montezano; Francisco J. Rios; Carmine Savoia; Rhian M. Touyz

Novel antiangiogenic cancer therapies, particularly agents that block vascular endothelial growth factor (VEGF) signalling, have improved outcomes in patients with cancers and are now used as first-line therapies for some tumours. However, with VEGF inhibitors (VEGFIs) are new complications, particularly hypertension. VEGFI-induced hypertension is a dose-dependent phenomenon due to on-target effects rather than off-target effects. Increased blood pressure occurs in almost 100% of patients who take VEGFIs, with a subset who develop severe hypertension. Molecular mechanisms underlying VEGFI-induced hypertension are unclear, but endothelial dysfunction and increased vascular resistance, due to impaired nitric oxide signalling, reduced prostacyclin production, endothelin-1 (ET-1) upregulation, oxidative stress, and rarefaction have been implicated. Treatment of hypertension should be aimed at reducing the risk of short-term morbidity associated with hypertension while maintaining effective dosing of antiangiogenic therapy for optimal cancer treatment. Although specific guidelines are not yet available for the management of VEGFI-induced hypertension, angiotensin-converting enzyme inhibitors and dihydropyridine calcium channel blockers are commonly used. Severe hypertension might require reduction of VEGFI dosing, or in some cases, interruption of treatment. As more potent VEGFIs are developed and as more cancer patients are treated with VEGFIs, the burden of hypertension toxicity will increase. This will be further compounded as the use of antiangiogenic drugs broadens to include older patients and those with pre-existing cardiovascular disease. Here we focus on VEGF as a target for antiangiogenesis and how this affects increased blood pressure. Putative mechanisms underlying VEGFI-induced hypertension are highlighted and therapeutic strategies to manage such hypertension are discussed.


Circulation | 2011

Identification of a Danger-Associated Peptide From Apolipoprotein B100 (ApoBDS-1) That Triggers Innate Proatherogenic Responses

Daniel F.J. Ketelhuth; Francisco J. Rios; Yajuan Wang; Huiqing Liu; Maria Johansson; Gunilla Nordin Fredrikson; Ulf Hedin; Magnus Gidlund; Jan Nilsson; Göran K. Hansson; Z. Yan

Background— Subendothelial deposited low-density lipoprotein particles are a known inflammatory factor in atherosclerosis. However, the causal components derived from low-density lipoprotein are still poorly defined. Apolipoprotein B100 (ApoB100) is the unexchangeable protein component of low-density lipoprotein, and the progression of atherosclerosis is associated with immune responses to ApoB100-derived peptides. In this study, we analyzed the proinflammatory activity of ApoB100 peptides in atherosclerosis. Methods and Results— By screening a peptide library of ApoB100, we identified a distinct native peptide referred to as ApoB100 danger-associated signal 1 (ApoBDS-1), which shows sequence-specific bioactivity in stimulation of interleukin-8, CCL2, and interleukin-6. ApoBDS-1 activates mitogen-activated protein kinase and calcium signaling, thereby effecting the expression of interleukin-8 in innate immune cells. Ex vivo stimulation of carotid plaques with ApoBDS-1 enhances interleukin-8 and prostaglandin E2 release. Furthermore, we demonstrated that ApoBDS-1–positive peptide fragments are present in atherosclerotic lesions using immunoassays and that low-molecular-weight fractions isolated from plaque show ApoBDS-1 activity inducing interleukin-8 production. Conclusions— Our data show that ApoBDS-1 is a previously unrecognized peptide with robust proinflammatory activity, contributing to the disease-promoting effects of low-density lipoprotein in the pathogenesis of atherosclerosis.


PLOS ONE | 2012

Co-stimulation of PAFR and CD36 is required for oxLDL-induced human macrophages activation.

Francisco J. Rios; Mariana M. Koga; Matheus Ferracini; Sonia Jancar

The oxidative process of LDL particles generates molecules which are structurally similar to platelet-activating factor (PAF), and some effects of oxidized LDL (oxLDL) have been shown to be dependent on PAF receptor (PAFR) activation. In a previous study, we showed that PAFR is required for upregulation of CD36 and oxLDL uptake. In the present study we analyzed the molecular mechanisms activated by oxLDL in human macrophages and the contribution of PAFR to this response. Human adherent monocytes/macrophages were stimulated with oxLDL. Uptake of oxLDL and CD36 expression were determined by flow cytometry; MAP kinases and Akt phosphorylation by Western blot; IL-8 and MCP-1 concentration by ELISA and mRNA expression by real-time PCR. To investigate the participation of the PI3K/Akt pathway, Gαi-coupled protein or PAFR, macrophages were treated with LY294002, pertussis toxin or with the PAFR antagonists WEB2170 and CV3988, respectively before addition of oxLDL. It was found that the addition of oxLDL to human monocytes/macrophages activates the PI3K/Akt pathway which in turn activates the MAPK (p38 and JNK). Phosphorylation of Akt requires the engagement of PAFR and a Gαi-coupled protein. The upregulation of CD36 protein and the uptake of oxLDL as well as the IL-8 production are dependent on PI3K/Akt pathway activation. The increased CD36 protein expression is dependent on PAFR and Gαi-coupled protein. Transfection studies using HEK 293t cells showed that oxLDL uptake occurs with either PAFR or CD36, but IL-8 production requires the co-transfection of both PAFR and CD36. These findings show that PAFR has a pivotal role in macrophages response to oxLDL and suggest that pharmacological intervention at the level of PAFR activation might be beneficial in atherosclerosis.


Hypertension | 2015

Chemerin Regulates Crosstalk Between Adipocytes and Vascular Cells Through Nox

Karla B. Neves; Aurelie Nguyen Dinh Cat; Rheure A Lopes; Francisco J. Rios; Aikaterini Anagnostopoulou; Nubia S. Lobato; Ana M. de Oliveira; Rita C. Tostes; Augusto C. Montezano; Rhian M. Touyz

Adipocytes produce adipokines, including chemerin, a chemoattractant that mediates effects through its ChemR23 receptor. Chemerin has been linked to endothelial dysfunction and vascular injury in pathological conditions, such as obesity, diabetes mellitus, and hypertension. Molecular mechanisms underlying this are elusive. Here we assessed whether chemerin through redox-sensitive signaling influences molecular processes associated with vascular growth, apoptosis, and inflammation. Human microvascular endothelial cells and vascular smooth muscle cells were stimulated with chemerin (50 ng/mL). Chemerin increased generation of reactive oxygen species and phosphorylation of mitogen-activated protein kinases, effects that were inhibited by ML171, GKT137831 (Nox inhibitors), and N-acetylcysteine (reactive oxygen species scavenger). Chemerin increased mRNA expression of proinflammatory mediators in vascular cells and increased monocyte-to-endothelial cell attachment. In human vascular smooth muscle cells, chemerin induced phosphorylation of mitogen-activated protein kinases and stimulated proliferation (increased proliferating cell nuclear antigen expression [proliferation marker] and BrdU incorporation [proliferation assay]). Chemerin decreased phosphatidylinositol 3-kinase/protein kinase B activation and increased TUNEL-positive human vascular smooth muscle cells. In human microvascular endothelial cells, chemerin reduced endothelial nitric oxide synthase activity and nitric oxide production. Adipocyte-conditioned medium from obese/diabetic mice (db/db), which have elevated chemerin levels, increased reactive oxygen species generation in vascular smooth muscle cells, whereas adipocyte-conditioned medium from control mice had no effect. Chemerin actions were blocked by CCX 832, a ChemR23 inhibitor. Our data demonstrate that chemerin, through Nox activation and redox-sensitive mitogen-activated protein kinases signaling, exerts proapoptotic, proinflammatory, and proliferative effects in human vascular cells. These findings elucidate some molecular mechanisms through chemerin, which is increased in obesity, whereby adipocytes may influence vascular function. We identify chemerin as a novel vasoactive adipokine, which may be important in obesity-related vascular injury.


Mediators of Inflammation | 2013

Oxidized LDL induces alternative macrophage phenotype through activation of CD36 and PAFR

Francisco J. Rios; Marianna M. Koga; Mateus Pecenin; Matheus Ferracini; Magnus Gidlund; Sonia Jancar

OxLDL is recognized by macrophage scavenger receptors, including CD36; we have recently found that Platelet-Activating Factor Receptor (PAFR) is also involved. Since PAFR in macrophages is associated with suppressor function, we examined the effect of oxLDL on macrophage phenotype. It was found that the presence of oxLDL during macrophage differentiation induced high mRNA levels to IL-10, mannose receptor, PPARγ and arginase-1 and low levels of IL-12 and iNOS. When human THP-1 macrophages were pre-treated with oxLDL then stimulated with LPS, the production of IL-10 and TGF-β significantly increased, whereas that of IL-6 and IL-8 decreased. In murine TG-elicited macrophages, this protocol significantly reduced NO, iNOS and COX2 expression. Thus, oxLDL induced macrophage differentiation and activation towards the alternatively activated M2-phenotype. In murine macrophages, oxLDL induced TGF-β, arginase-1 and IL-10 mRNA expression, which were significantly reduced by pre-treatment with PAFR antagonists (WEB and CV) or with antibodies to CD36. The mRNA expression of IL-12, RANTES and CXCL2 were not affected. We showed that this profile of macrophage activation is dependent on the engagement of both CD36 and PAFR. We conclude that oxLDL induces alternative macrophage activation by mechanisms involving CD36 and PAFR.


Mediators of Inflammation | 2012

Expression of PAFR as part of a prosurvival response to chemotherapy: a novel target for combination therapy in melanoma.

Ana Cláudia Onuchic; Camila Maria Longo Machado; Renata de Freitas Saito; Francisco J. Rios; Sonia Jancar; Roger Chammas

Melanoma cells express the platelet-activating factor receptor (PAFR) and, thus, respond to PAF, a bioactive lipid produced by both tumour cells and those in the tumour microenvironment such as macrophages. Here, we show that treatment of a human melanoma SKmel37 cell line with cisplatin led to increased expression of PAFR and its accumulation. In the presence of exogenous PAF, melanoma cells were significantly more resistant to cisplatin-induced cell death. Inhibition of PAFR-dependent signalling pathways by a PAFR antagonist (WEB2086) showed chemosensitisation of melanoma cells in vitro. Nude mice were inoculated with SKmel37 cells and treated with cisplatin and WEB2086. Animals treated with both agents showed significantly decreased tumour growth compared to the control group and groups treated with only one agent. PAFR accumulation and signalling are part of a prosurvival program of melanoma cells, therefore constituting a promising target for combination therapy for melanomas.


PLOS ONE | 2013

Uptake of oxLDL and IL-10 Production by Macrophages Requires PAFR and CD36 Recruitment into the Same Lipid Rafts

Francisco J. Rios; Matheus Ferracini; Mateus Pecenin; Marianna M. Koga; Yajuan Wang; Daniel F.J. Ketelhuth; Sonia Jancar

Macrophage interaction with oxidized low-density lipoprotein (oxLDL) leads to its differentiation into foam cells and cytokine production, contributing to atherosclerosis development. In a previous study, we showed that CD36 and the receptor for platelet-activating factor (PAFR) are required for oxLDL to activate gene transcription for cytokines and CD36. Here, we investigated the localization and physical interaction of CD36 and PAFR in macrophages stimulated with oxLDL. We found that blocking CD36 or PAFR decreases oxLDL uptake and IL-10 production. OxLDL induces IL-10 mRNA expression only in HEK293T expressing both receptors (PAFR and CD36). OxLDL does not induce IL-12 production. The lipid rafts disruption by treatment with βCD reduces the oxLDL uptake and IL-10 production. OxLDL induces co-immunoprecipitation of PAFR and CD36 with the constitutive raft protein flotillin-1, and colocalization with the lipid raft-marker GM1-ganglioside. Finally, we found colocalization of PAFR and CD36 in macrophages from human atherosclerotic plaques. Our results show that oxLDL induces the recruitment of PAFR and CD36 into the same lipid rafts, which is important for oxLDL uptake and IL-10 production. This study provided new insights into how oxLDL interact with macrophages and contributing to atherosclerosis development.


Mediators of Inflammation | 2013

Clearance of Apoptotic Cells by Macrophages Induces Regulatory Phenotype and Involves Stimulation of CD36 and Platelet-Activating Factor Receptor

Matheus Ferracini; Francisco J. Rios; Mateus Pecenin; Sonia Jancar

Phagocytosis of apoptotic cells (efferocytosis) induces macrophage differentiation towards a regulatory phenotype (IL-10high/IL-12p40low). CD36 is involved in the recognition of apoptotic cells (AC), and we have shown that the platelet-activating factor receptor (PAFR) is also involved. Here, we investigated the contribution of PAFR and CD36 to efferocytosis and to the establishment of a regulatory macrophage phenotype. Mice bone marrow-derived macrophages were cocultured with apoptotic thymocytes, and the phagocytic index was determined. Blockage of PAFR with antagonists or CD36 with specific antibodies inhibited the phagocytosis of AC (~70–80%). Using immunoprecipitation and confocal microscopy, we showed that efferocytosis increased the CD36 and PAFR colocalisation in the macrophage plasma membrane; PAFR and CD36 coimmunoprecipitated with flotillin-1, a constitutive lipid raft protein, and disruption of these membrane microdomains by methyl-β-cyclodextrin reduced AC phagocytosis. Efferocytosis induced a pattern of cytokine production, IL-10high/IL-12p40low, that is, characteristic of a regulatory phenotype. LPS potentiated the efferocytosis-induced production of IL-10, and this was prevented by blocking PAFR or CD36. It can be concluded that phagocytosis of apoptotic cells engages CD36 and PAFR, possibly in lipid rafts, and this is required for optimal efferocytosis and the establishment of the macrophage regulatory phenotype.

Collaboration


Dive into the Francisco J. Rios's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonia Jancar

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Magnus Gidlund

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Carmine Savoia

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rheure A Lopes

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge