Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aurelie Nguyen Dinh Cat is active.

Publication


Featured researches published by Aurelie Nguyen Dinh Cat.


Circulation | 2005

Conditional Mineralocorticoid Receptor Expression in the Heart Leads to Life-Threatening Arrhythmias

Antoine Ouvrard-Pascaud; Yannis Sainte-Marie; Jean-Pierre Benitah; Romain Perrier; Christelle Soukaseum; Aurelie Nguyen Dinh Cat; Anne Royer; Khai Le Quang; Flavien Charpentier; Sophie Demolombe; Fatima Mechta-Grigoriou; Ahmed Beggah; Pierre Maison-Blanche; Marie-Edith Oblin; Claude Delcayre; Glenn I. Fishman; Nicolette Farman; Brigitte Escoubet; Frederic Jaisser

Background—Life-threatening cardiac arrhythmia is a major source of mortality worldwide. Besides rare inherited monogenic diseases such as long-QT or Brugada syndromes, which reflect abnormalities in ion fluxes across cardiac ion channels as a final common pathway, arrhythmias are most frequently acquired and associated with heart disease. The mineralocorticoid hormone aldosterone is an important contributor to morbidity and mortality in heart failure, but its mechanisms of action are incompletely understood. Methods and Results—To specifically assess the role of the mineralocorticoid receptor (MR) in the heart, in the absence of changes in aldosteronemia, we generated a transgenic mouse model with conditional cardiac-specific overexpression of the human MR. Mice exhibit a high rate of death prevented by spironolactone, an MR antagonist used in human therapy. Cardiac MR overexpression led to ion channel remodeling, resulting in prolonged ventricular repolarization at both the cellular and integrated levels and in severe ventricular arrhythmias. Conclusions—Our results indicate that cardiac MR triggers cardiac arrhythmias, suggesting novel opportunities for prevention of arrhythmia-related sudden death.


Hypertension | 2012

Adipocytes Produce Aldosterone Through Calcineurin-Dependent Signaling Pathways: Implications in Diabetes Mellitus–Associated Obesity and Vascular Dysfunction

Ana M. Briones; Aurelie Nguyen Dinh Cat; Glaucia E. Callera; Alvaro Yogi; Dylan Burger; Ying He; Jose Correa; Anne Marie Gagnon; Celso E. Gomez-Sanchez; Elise P. Gomez-Sanchez; Alexander Sorisky; Teik Chye Ooi; Marcel Ruzicka; Kevin D. Burns; Rhian M. Touyz

We reported aldosterone as a novel adipocyte-derived factor that regulates vascular function. We aimed to investigate molecular mechanisms, signaling pathways, and functional significance of adipocyte-derived aldosterone and to test whether adipocyte-derived aldosterone is increased in diabetes mellitus–associated obesity, which contributes to vascular dysfunction. Studies were performed in the 3T3-L1 adipocyte cell line and mature adipocytes isolated from human and mouse (C57BL/6J) adipose tissue. Mesenteric arteries with and without perivascular fat and mature adipocytes were obtained from obese diabetic db/db and control db/+ mice. Aldosterone synthase (CYP11B2; mRNA and protein) was detected in 3T3-L1 and mature adipocytes, which secrete aldosterone basally and in response to angiotensin II (Ang II). In 3T3-L1 adipocytes, Ang II stimulation increased aldosterone secretion and CYP11B2 expression. Ang II effects were blunted by an Ang II type 1 receptor antagonist (candesartan) and inhibitors of calcineurin (cyclosporine A and FK506) and nuclear factor of activated T-cells (VIVIT). FAD286 (aldosterone synthase inhibitor) blunted adipocyte differentiation. In candesartan-treated db/db mice (1 mg/kg per day, 4 weeks) increased plasma aldosterone, CYP11B2 expression, and aldosterone secretion were reduced. Acetylcholine-induced relaxation in db/db mesenteric arteries containing perivascular fat was improved by eplerenone (mineralocorticoid receptor antagonist) without effect in db/+ mice. Adipocytes possess aldosterone synthase and produce aldosterone in an Ang II/Ang II type 1 receptor/calcineurin/nuclear factor of activated T-cells–dependent manner. Functionally adipocyte-derived aldosterone regulates adipocyte differentiation and vascular function in an autocrine and paracrine manner, respectively. These novel findings identify adipocytes as a putative link between aldosterone and vascular dysfunction in diabetes mellitus–associated obesity.


Antioxidants & Redox Signaling | 2013

Angiotensin II, NADPH oxidase, and redox signaling in the vasculature.

Aurelie Nguyen Dinh Cat; Augusto C. Montezano; Dylan Burger; Rhian M. Touyz

SIGNIFICANCE Angiotensin II (Ang II) influences the function of many cell types and regulates many organ systems, in large part through redox-sensitive processes. In the vascular system, Ang II is a potent vasoconstrictor and also promotes inflammation, hypertrophy, and fibrosis, which are important in vascular damage and remodeling in cardiovascular diseases. The diverse actions of Ang II are mediated via Ang II type 1 and Ang II type 2 receptors, which couple to various signaling molecules, including NADPH oxidase (Nox), which generates reactive oxygen species (ROS). ROS are now recognized as signaling molecules, critically placed in pathways activated by Ang II. Mechanisms linking Nox and Ang II are complex and not fully understood. RECENT ADVANCES Ang II regulates vascular cell production of ROS through various recently characterized Noxs, including Nox1, Nox2, Nox4, and Nox5. Activation of these Noxs leads to ROS generation, which in turn influences many downstream signaling targets of Ang II, including MAP kinases, RhoA/Rho kinase, transcription factors, protein tyrosine phosphatases, and tyrosine kinases. Activation of these redox-sensitive pathways regulates vascular cell growth, inflammation, contraction, and senescence. CRITICAL ISSUES Although there is much evidence indicating a role for Nox/ROS in Ang II function, there is still a paucity of information on how Ang II exerts cell-specific effects through ROS and how Nox isoforms are differentially regulated by Ang II. Moreover, exact mechanisms whereby ROS induce oxidative modifications of signaling molecules mediating Ang II actions remain elusive. FUTURE DIRECTIONS Future research should elucidate these issues to better understand the significance of Ang II and ROS in vascular (patho) biology.


Peptides | 2011

A new look at the renin–angiotensin system—Focusing on the vascular system ☆

Aurelie Nguyen Dinh Cat; Rhian M. Touyz

The renin-angiotensin system (RAS), critically involved in the control of blood pressure and volume homeostasis, is a dual system comprising a circulating component and a local tissue component. The rate limiting enzyme is renin, which in the circulating RAS derives from the kidney to generate Ang II, which in turn regulates cardiovascular function by binding to AT(1) and AT(2) receptors on cardiac, renal and vascular cells. The tissue RAS can operate independently of the circulating RAS and may be activated even when the circulating RAS is suppressed or normal. A functional tissue RAS has been identified in brain, kidney, heart, adipose tissue, hematopoietic tissue, gastrointestinal tract, liver, endocrine system and blood vessels. Whereas angiotensinsinogen, angiotensin converting enzyme (ACE), Ang I and Ang II are synthesized within these tissues, there is still controversy as to whether renin is produced locally or whether it is taken up from the circulation, possibly by the (pro)renin receptor. This is particularly true in the vascular wall, where expression of renin is very low. The exact function of the vascular RAS remains elusive, but may contribute to fine-tuning of vascular tone and arterial structure and may amplify vascular effects of the circulating RAS, particularly in pathological conditions, such as in hypertension, atherosclerosis and diabetes. New concepts relating to the vascular RAS have recently been elucidated including: (1) the presence of functionally active Ang-(1-7)-Mas axis in the vascular system, (2) the importance of the RAS in perivascular adipose tissue and cross talk with vessels, and (3) the contribution to vascular RAS of Ang II derived from immune and inflammatory cells within the vascular wall. The present review highlights recent progress in the RAS field, focusing on the tissue system and particularly on the vascular RAS.


The FASEB Journal | 2010

The endothelial mineralocorticoid receptor regulates vasoconstrictor tone and blood pressure

Aurelie Nguyen Dinh Cat; Violaine Griol-Charhbili; Laurent Loufrani; Carlos Labat; Laura E. Benjamin; Nicolette Farman; Patrick Lacolley; Daniel Henrion; Frederic Jaisser

Pathophysiological aldosterone (aldo)/ mineralocorticoid receptor (MR) signaling has significant effects on the cardiovascular system, resulting in hypertension and cardiovascular remodeling; however, the specific contribution of the vascular MR to blood pressure regulation remains to be established. To address this question, we generated a mouse model with conditional overexpression of the MR in endothelial cells (MR‐EC). In basal conditions, MR‐EC mice developed moderate hypertension that could be reversed by canrenoate, a pharmacological MR antagonist. MR‐EC mice presented increased contractile response of resistance arteries to vasoconstrictors (phenylephrine, thromboxane A2 analog, angiotensin II, and endothelin 1) in the absence of vascular morphological alterations. The acute blood pressure response to angiotensin II or endothelin 1 infusion was increased in MR‐EC mice compared with that in littermate controls. These observations demonstrate that enhanced MR activation in the endothelium generates an increase in blood pressure, independent of stimulation of renal tubular Na+ transport by aldo/MR or direct activation of smooth muscle MR and establish one mechanism by which endothelial MR activation per se may contribute to impaired vascular reactivity.—Nguyen Dinh Cat, A., Griol‐Charhbili, V., Loufrani, L., Labat, C, Benjamin, L., Farman, N., Lacolley, P., Henrion, D., and Jaisser, F. The endothelial mineralocorticoid receptor regulates vasoconstrictor tone and blood pressure. FASEB J. 24, 2454–2463 (2010). www.fasebj.org


Current Hypertension Reports | 2014

Angiotensin II and Vascular Injury

Augusto C. Montezano; Aurelie Nguyen Dinh Cat; Francisco J. Rios; Rhian M. Touyz

Vascular injury, characterized by endothelial dysfunction, structural remodelling, inflammation and fibrosis, plays an important role in cardiovascular diseases. Cellular processes underlying this include altered vascular smooth muscle cell (VSMC) growth/apoptosis, fibrosis, increased contractility and vascular calcification. Associated with these events is VSMC differentiation and phenotypic switching from a contractile to a proliferative/secretory phenotype. Inflammation, associated with macrophage infiltration and increased expression of redox-sensitive pro-inflammatory genes, also contributes to vascular remodelling. Among the many factors involved in vascular injury is Ang II. Ang II, previously thought to be the sole biologically active downstream peptide of the renin-angiotensin system (RAS), is converted to smaller peptides, [Ang III, Ang IV, Ang-(1-7)], that are functional and that modulate vascular tone and structure. The actions of Ang II are mediated via signalling pathways activated upon binding to AT1R and AT2R. AT1R activation induces effects through PLC-IP3-DAG, MAP kinases, tyrosine kinases, tyrosine phosphatases and RhoA/Rho kinase. Ang II elicits many of its (patho)physiological actions by stimulating reactive oxygen species (ROS) generation through activation of vascular NAD(P)H oxidase (Nox). ROS in turn influence redox-sensitive signalling molecules. Here we discuss the role of Ang II in vascular injury, focusing on molecular mechanisms and cellular processes. Implications in vascular remodelling, inflammation, calcification and atherosclerosis are highlighted.


Clinical Science | 2013

Renoprotective effects of a novel Nox1/4 inhibitor in a mouse model of Type 2 diabetes.

Mona Sedeek; Alex Gutsol; Augusto C. Montezano; Dylan Burger; Aurelie Nguyen Dinh Cat; Chris R. J. Kennedy; Kevin D. Burns; Mark E. Cooper; Karin Jandeleit-Dahm; Patrick Page; Cedric Szyndralewiez; Freddy Heitz; Richard L. Hébert; Rhian M. Touyz

Nox (NADPH oxidase)-derived ROS (reactive oxygen species) have been implicated in the development of diabetic nephropathy. Of the Nox isoforms in the kidney, Nox4 is important because of its renal abundance. In the present study, we tested the hypothesis that GKT136901, a Nox1/4 inhibitor, prevents the development of nephropathy in db/db (diabetic) mice. Six groups of male mice (8-week-old) were studied: (i) untreated control db/m, (ii) low-dose GKT136901-treated db/m (30 mg/kg of body weight per day), (iii) high-dose GKT136901-treated db/m (90 mg/kg of body weight per day), (iv) untreated db/db; (v) low dose GKT136901-treated db/db; and (vi) high-dose GKT136901-treated db/db. GKT136901, in chow, was administered for 16 weeks. db/db mice developed diabetes and nephropathy as evidenced by hyperglycaemia, albuminuria and renal injury (mesangial expansion, tubular dystrophy and glomerulosclerosis). GKT136901 treatment had no effect on plasma glucose or BP (blood pressure) in any of the groups. Plasma and urine TBARSs (thiobarbituric acid-reacting substances) levels, markers of systemic and renal oxidative stress, respectively, were increased in diabetic mice. Renal mRNA expression of Nox4, but not of Nox2, increased, Nox1 was barely detectable in db/db. Expression of the antioxidant enzyme SOD-1 (superoxide dismutase 1) decreased in db/db mice. Renal content of fibronectin, pro-collagen, TGFβ (transforming growth factor β) and VCAM-1 (vascular cell adhesion molecule 1) and phosphorylation of ERK1/2 (extracellular-signal-regulated kinase 1/2) were augmented in db/db kidneys, with no change in p38 MAPK (mitogen-activated protein kinase) and JNK (c-Jun N-terminal kinase). Treatment reduced albuminuria, TBARS and renal ERK1/2 phosphorylation and preserved renal structure in diabetic mice. Our findings suggest a renoprotective effect of the Nox1/4 inhibitor, possibly through reduced oxidative damage and decreased ERK1/2 activation. These phenomena occur independently of improved glucose control, suggesting GKT136901-sensitive targets are involved in complications of diabetes rather than in the disease process.


Current Opinion in Nephrology and Hypertension | 2012

Extrarenal effects of aldosterone.

Aurelie Nguyen Dinh Cat; Frederic Jaisser

Purpose of reviewThe renal distal tubule has been considered for a long time as the main cellular target of aldosterone, where the hormone enhances sodium reabsorption and potassium secretion. However, other cell types in nonepithelial tissues, such as the heart, the vessels, adipose tissue, and macrophages, are now also recognized as targets for aldosterone. The functions that aldosterone exerts in these nonclassical target tissues are still a matter of debate. This review will highlight the recent findings on the extrarenal effects of aldosterone. Recent findingsNumerous studies showed that aldosterone exerts profibrotic and proinflammatory effects, but one or more cofactors such as salt, angiotensin II, and oxidative stress are required. Moreover, inflammation and macrophage infiltration are a prerequisite to aldosterone-induced cardiac fibrosis. This underlines a key role for aldosterone and the mineralocorticoid receptor in macrophages. Inflammatory effects of aldosterone in vascular smooth muscle cells involve trafficking to lipid rafts/caveolae through receptor tyrosine kinases. Finally, a growing body of evidence indicates a prominent role of aldosterone/mineralocorticoid receptor in the metabolic syndrome, in insulin resistance, and in adipocyte biology. SummaryThe idiom from Socrates, ‘the more we learn, the less we know’, can be applied to aldosterone with its different facets and its pleiotropic effects. There is clear evidence for rapid nongenomic effects of aldosterone, mineralocorticoid receptor-dependent and mineralocorticoid receptor-independent signaling, in the heart, the vessels, and other nonepithelial tissues, leading to inflammation, fibrosis, and progression of cardiovascular diseases including hypertension and metabolic syndrome.


Hypertension | 2008

Cross-Talk Between Mineralocorticoid and Angiotensin II Signaling for Cardiac Remodeling

An Di Zhang; Aurelie Nguyen Dinh Cat; Christelle Soukaseum; Brigitte Escoubet; Aïcha Cherfa; Smail Messaoudi; Claude Delcayre; Jane-Lise Samuel; Frederic Jaisser

Experimental and clinical studies show that aldosterone/mineralocorticoid receptor (MR) activation has deleterious effects in the cardiovascular system that may cross-talk with those of angiotensin II (Ang II). This study, using a transgenic mouse model with conditional and cardiomyocyte-restricted overexpression of the human MR, was designed to assess the cardiac consequences of Ang II treatment and cardiomyocyte MR activation. Two-month-old MHCtTA/tetO-hMR double transgenic males (DTg) with conditional, cardiomyocyte-specific human MR expression, and their control littermates were infused with Ang II (200 ng/kg per minute) or vehicle via osmotic minipump. Ang II induced similar increases in systolic blood pressure in control and DTg mice but a greater increase in left ventricle mass/body weight in DTg than in control mice. In DTg mice, Ang II–induced left ventricle hypertrophy and diastolic dysfunction without affecting systolic function, as assessed by echography. These effects were associated with an increase in the expression of collagens and fibronectin, matrix metalloproteinase 2 and matrix metalloproteinase 9 activities, and histological fibrosis. Ang II treatment of DTg mice did not affect inflammation markers, but oxidative stress was substantially increased, as indicated by gp91 expression, apocynin-inhibitable NADPH oxidase activity, and protein carbonylation. These molecular and functional alterations were prevented by pharmacological MR antagonism. Our findings indicate that the effects of Ang II and MR activation in the heart are additive. This observation may be relevant to the clinical use of MR or of combined Ang II type 1 receptor-MR antagonists for hypertrophic cardiomyopathies or for heart failure, particularly when diastolic dysfunction is associated with preserved systolic function.


Current Hypertension Reports | 2011

Cell Signaling of Angiotensin II on Vascular Tone: Novel Mechanisms

Aurelie Nguyen Dinh Cat; Rhian M. Touyz

Angiotensin II (Ang II) is a pleiotropic hormone that influences the function of many cell types and regulates many organ systems. In the cardiovascular system, it is a potent vasoconstrictor that increases peripheral vascular resistance and elevates arterial pressure. It also promotes inflammation, hypertrophy, and fibrosis, which are important in vascular remodeling in cardiovascular diseases. The diverse actions of Ang II are mediated via AT1 and AT2 receptors, which couple to many signaling molecules, including small G proteins, phospholipases, mitogen-activated protein (MAP) kinases, phosphatases, tyrosine kinases, NADPH oxidase, and transcription factors. In general, acute Ang II stimulation induces vasoconstriction through changes in the intracellular free calcium concentration [Ca2+]i, whereas long-term stimulation leads to cell proliferation and proinflammatory responses. This review focuses on signaling processes of vasoconstriction and highlights some new mechanisms regulating the contractile machinery in controlling vasomotor tone by Ang II, including RhoA/Rho kinase, transient receptor potential (TRP) channels, reactive oxygen species, and arachidonic acid metabolites.

Collaboration


Dive into the Aurelie Nguyen Dinh Cat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying He

University of Ottawa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge