Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aune Moro is active.

Publication


Featured researches published by Aune Moro.


Journal of Biological Chemistry | 2013

Role of Pancreatic Cancer-derived Exosomes in Salivary Biomarker Development

Chang Lau; Yong Kim; David Chia; Nadine Spielmann; Guido Eibl; David Elashoff; Fang Wei; Yi-Ling Lin; Aune Moro; Tristan Grogan; Samantha H. Chiang; Eric Feinstein; Christopher A. Schafer; James J. Farrell; David T. Wong

Background: Salivary biomarkers for systemic diseases have been undermined due to lack of mechanistic and biological rationale. Results: Suppression of exosome biogenesis leads to ablation of salivary biomarkers. Conclusion: Tumor-derived exosomes provide a mechanism for discriminatory biomarkers in saliva. Significance: Tumor-derived exosomes provide the scientific rationale that connects pancreatic tumors and the oral cavity leading to salivary biomarkers. Recent studies have demonstrated that discriminatory salivary biomarkers can be readily detected upon the development of systemic diseases such as pancreatic cancer, breast cancer, lung cancer, and ovarian cancer. However, the utility of salivary biomarkers for the detection of systemic diseases has been undermined due to the absence of the biological and mechanistic rationale as to why distal diseases from the oral cavity would lead to the development of discriminatory biomarkers in saliva. Here, we examine the hypothesis that pancreatic tumor-derived exosomes are mechanistically involved in the development of pancreatic cancer-discriminatory salivary transcriptomic biomarkers. We first developed a pancreatic cancer mouse model that yielded discriminatory salivary biomarkers by implanting the mouse pancreatic cancer cell line Panc02 into the pancreas of the syngeneic host C57BL/6. The role of pancreatic cancer-derived exosomes in the development of discriminatory salivary biomarkers was then tested by engineering a Panc02 cell line that is suppressed for exosome biogenesis, implanting into the C56BL/6 mouse, and examining whether the discriminatory salivary biomarker profile was ablated or disrupted. Suppression of exosome biogenesis results in the ablation of discriminatory salivary biomarker development. This study supports that tumor-derived exosomes provide a mechanism in the development of discriminatory biomarkers in saliva and distal systemic diseases.


Molecular Cancer Therapeutics | 2008

Pomegranate extract inhibits androgen-independent prostate cancer growth through a nuclear factor-κB-dependent mechanism

Matthew Rettig; David Heber; Jiabin An; Navindra P. Seeram; Jian Y. Rao; Huiren Liu; Tobias Klatte; Arie S. Belldegrun; Aune Moro; Susanne M. Henning; Deqiong Mo; William J. Aronson; Allan J. Pantuck

Constitutive nuclear factor-κB (NF-κB) activation is observed in androgen-independent prostate cancer and represents a predictor for biochemical recurrence after radical prostatectomy. Dietary agents such as pomegranate extract (PE) have received increasing attention as potential agents to prevent the onset or progression of many malignancies, including prostate cancer. Here, we show that PE inhibited NF-κB and cell viability of prostate cancer cell lines in a dose-dependent fashion in vitro. Importantly, maximal PE-induced apoptosis was dependent on PE-mediated NF-κB blockade. In the LAPC4 xenograft model, PE delayed the emergence of LAPC4 androgen-independent xenografts in castrated mice through an inhibition of proliferation and induction of apoptosis. Moreover, the observed increase in NF-κB activity during the transition from androgen dependence to androgen independence in the LAPC4 xenograft model was abrogated by PE. Our study represents the first description of PE as a promising dietary agent for the prevention of the emergence of androgen independence that is driven in part by heightened NF-κB activity. [Mol Cancer Ther 2008;7(9):2662–71]


American Journal of Pathology | 2011

Overexpression of CXCL5 Is Associated With Poor Survival in Patients With Pancreatic Cancer

Aihua Li; Jonathan C. King; Aune Moro; Mark D. Sugi; David W. Dawson; Jeffrey Kaplan; Gang Li; Xuyang Lu; Robert M. Strieter; Marie D. Burdick; Vay Liang W. Go; Howard A. Reber; Guido Eibl; O. Joe Hines

Epithelial neutrophil-activating peptide-78 (CXCL5), a member of the CXC chemokine family, has been shown to be involved in angiogenesis, tumor growth, and metastasis. The objective of this study was to determine the relationship between CXCL5 expression and tumor progression in human pancreatic cancer and to elucidate the mechanism underlying CXCL5-mediated tumor angiogenesis and cancer growth. We report herein that CXCL5 is overexpressed in human pancreatic cancer compared with paired normal pancreas tissue. Overexpression of CXCL5 is significantly correlated with poorer tumor differentiation, advanced clinical stage, and shorter patient survival. Patients with pancreatic cancer and CXCL5 overexpression who underwent resection of cancer had a mean survival time 25.5 months shorter than that of patients who did not overexpress CXCL5. Blockade of CXCL5 or its receptor CXCR2 by small-interfering RNA knockdown or antibody neutralization attenuated human pancreatic cancer growth in a nude mouse model. Finally, we demonstrated that CXCL5 mediates pancreatic cancer-derived angiogenesis through activation of several signaling pathways, including protein kinase B (Akt), extracellular signal-regulated kinase (ERK), and signal transducer and activator of transcription (STAT) in human endothelial cells. These data suggest that CXCL5 is an important mediator of tumor-derived angiogenesis and that it may serve as a survival factor for pancreatic cancer. Blockade of either CXCL5 or CXCR2 may be a critical adjunct antiangiogenic therapy against pancreatic cancer.


Cancer Prevention Research | 2013

High-Fat, High-Calorie Diet Promotes Early Pancreatic Neoplasia in the Conditional KrasG12D Mouse Model

David W. Dawson; Kathleen M. Hertzer; Aune Moro; Graham W. Donald; Hui-Hua Chang; Vay Liang W. Go; Steven J. Pandol; Aurelia Lugea; Anna S. Gukovskaya; Gang Li; Oscar J. Hines; Enrique Rozengurt; Guido Eibl

There is epidemiologic evidence that obesity increases the risk of cancers. Several underlying mechanisms, including inflammation and insulin resistance, are proposed. However, the driving mechanisms in pancreatic cancer are poorly understood. The goal of the present study was to develop a model of diet-induced obesity and pancreatic cancer development in a state-of-the-art mouse model, which resembles important clinical features of human obesity, for example, weight gain and metabolic disturbances. Offspring of Pdx-1-Cre and LSL-KrasG12D mice were allocated to either a high-fat, high-calorie diet (HFCD; ∼4,535 kcal/kg; 40% of calories from fats) or control diet (∼3,725 kcal/kg; 12% of calories from fats) for 3 months. Compared with control animals, mice fed with the HFCD significantly gained more weight and developed hyperinsulinemia, hyperglycemia, hyperleptinemia, and elevated levels of insulin-like growth factor I (IGF-I). The pancreas of HFCD-fed animals showed robust signs of inflammation with increased numbers of infiltrating inflammatory cells (macrophages and T cells), elevated levels of several cytokines and chemokines, increased stromal fibrosis, and more advanced PanIN lesions. Our results show that a diet high in fats and calories leads to obesity and metabolic disturbances similar to humans and accelerates early pancreatic neoplasia in the conditional KrasG12D mouse model. This model and findings will provide the basis for more robust studies attempting to unravel the mechanisms underlying the cancer-promoting properties of obesity, as well as to evaluate dietary- and chemopreventive strategies targeting obesity-associated pancreatic cancer development. Cancer Prev Res; 6(10); 1064–73. ©2013 AACR.


Pancreas | 2013

The flavonoid quercetin inhibits pancreatic cancer growth in vitro and in vivo

Eliane Angst; Jenny L. Park; Aune Moro; Qing-Yi Lu; Xuyang Lu; Gang Li; Jonathan C. King; Monica Chen; Howard A. Reber; Vay Liang W. Go; Guido Eibl; Oscar J. Hines

Objectives The flavonoid quercetin holds promise as an antitumor agent in several preclinical animal models. However, the efficacy of oral administration of quercetin in a pancreatic cancer mouse model is unknown. Methods The antiproliferative effects of quercetin alone or in combination with gemcitabine were tested in 2 human pancreatic cancer cell lines using cell count and MTT assays. Apoptosis was evaluated by flow cytometry. Tumor growth in vivo was investigated in an orthotopic pancreatic cancer animal model using bioluminescence. Quercetin was administered orally in the diet. Results Quercetin inhibited the growth of pancreatic cancer cell lines, which was caused by an induction of apoptosis. In addition, dietary supplementation of quercetin attenuated the growth of orthotopically transplanted pancreatic xenografts. The combination of gemcitabine and quercetin had no additional effect compared with quercetin alone. In vivo quercetin caused significant apoptosis and reduced tumor cell proliferation. Conclusions Our data provide evidence that oral administration of quercetin was capable of inhibiting growth of orthotopic pancreatic tumors in a nude mouse model. These data suggest a possible benefit of quercetin in patients with pancreatic cancer.


Pancreas | 2013

Metformin Inhibits the Growth of Human Pancreatic Cancer Xenografts

Krisztina Kisfalvi; Aune Moro; James Sinnett-Smith; Guido Eibl; Enrique Rozengurt

Objective Pancreatic ductal adenocarcinoma is a devastating disease, with an overall 5-year survival rate of only 3% to 5%. As the current therapies offer very limited survival benefits, novel therapeutic strategies are urgently required to treat this disease. Here, we determined whether metformin administration inhibits the growth of PANC-1 and MiaPaCa-2 tumor xenografts in vivo. Methods Different xenograft models, including orthotopic implantation, were used to determine whether intraperitoneal or oral administration of metformin inhibits the growth of pancreatic cancer in vivo. Results We demonstrate that metformin given once daily intraperitoneally at various doses (50-250 mg/kg) to nude mice inhibited the growth of PANC-1 xenografts in a dose-dependent manner. A significant effect of metformin was obtained at 50 mg/kg and maximal effect at 200 mg/kg. Metformin administration also caused a significant reduction in the phosphorylation of ribosomal S6 protein and ERK in these xenografts. Metformin also inhibited the growth of pancreatic cancer xenografts when administered orally (2.5 mg/mL) either before or after tumor implantation. Importantly, oral administration of metformin also inhibited the growth of MiaPaCa-2 tumors xenografted orthotopically. Conclusions The studies presented here provide further evidence indicating that metformin offers a potential novel approach for pancreatic ductal adenocarcinoma prevention and therapy.


The Prostate | 2010

Chemoprevention of prostate cancer with lycopene in the TRAMP model.

Ramdev Konijeti; Susanne M. Henning; Aune Moro; Ahmed Sheikh; David Elashoff; Ari Shapiro; Melvin Ku; Jonathan W. Said; David Heber; Pinchas Cohen; William J. Aronson

Dietary lycopene combined with other constituents from whole tomatoes was previously found to have greater chemopreventive effects against prostate cancer as compared to pure lycopene provided in a beadlet formulation. We hypothesized that tomato paste would have greater chemopreventive effects in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice relative to equivalent lycopene doses provided from lycopene beadlets.


Journal of Nutritional Biochemistry | 2012

Polyphenols in brewed green tea inhibit prostate tumor xenograft growth by localizing to the tumor and decreasing oxidative stress and angiogenesis

Susanne M. Henning; Piwen Wang; Jonathan W. Said; Clara E. Magyar; Brandon Castor; Ngan Doan; Carmen Tosity; Aune Moro; Kun Gao; Luyi Li; David Heber

It has been demonstrated in various animal models that the oral administration of green tea (GT) extracts in drinking water can inhibit tumor growth, but the effects of brewed GT on factors promoting tumor growth, including oxidant damage of DNA and protein, angiogenesis and DNA methylation, have not been tested in an animal model. To explore these potential mechanisms, brewed GT was administered instead of drinking water to male severe combined immunodeficiency (SCID) mice with androgen-dependent human LAPC4 prostate cancer cell subcutaneous xenografts. Tumor volume was decreased significantly in mice consuming GT, and tumor size was significantly correlated with GT polyphenol (GTP) content in tumor tissue. There was a significant reduction in hypoxia-inducible factor 1-alpha and vascular endothelial growth factor protein expression. GT consumption significantly reduced oxidative DNA and protein damage in tumor tissue as determined by 8-hydroxydeoxyguanosine/deoxyguanosine ratio and protein carbonyl assay, respectively. Methylation is known to inhibit antioxidative enzymes such as glutathione S-transferase pi to permit reactive oxygen species promotion of tumor growth. GT inhibited tumor 5-cytosine DNA methyltransferase 1 mRNA and protein expression significantly, which may contribute to the inhibition of tumor growth by reactivation of antioxidative enzymes. This study advances our understanding of tumor growth inhibition by brewed GT in an animal model by demonstrating tissue localization of GTPs in correlation with inhibition of tumor growth. Our results suggest that the inhibition of tumor growth is due to GTP-mediated inhibition of oxidative stress and angiogenesis in the LAPC4 xenograft prostate tumor in SCID mice.


Biochimica et Biophysica Acta | 2012

Evidence for activation of mutated p53 by apigenin in human pancreatic cancer.

Jonathan C. King; Qing-Yi Lu; Gang Li; Aune Moro; Hiroki Takahashi; Monica Chen; Vay Liang W. Go; Howard A. Reber; Guido Eibl; O. Joe Hines

Pancreatic cancer is an exceedingly lethal disease with a five-year survival that ranks among the lowest of gastrointestinal malignancies. Part of its lethality is attributable to a generally poor response to existing chemotherapeutic regimens. New therapeutic approaches are urgently needed. We aimed to elucidate the anti-neoplastic mechanisms of apigenin-an abundant, naturally-occurring plant flavonoid-with a particular focus on p53 function. Pancreatic cancer cells (BxPC-3, MiaPaCa-2) experienced dose and time-dependent growth inhibition and increased apoptosis with apigenin treatment. p53 post-translational modification, nuclear translocation, DNA binding, and upregulation of p21 and PUMA were all enhanced by apigenin treatment despite mutated p53 in both cell lines. Transcription-dependent p53 activity was reversed by pifithrin-α, a specific DNA binding inhibitor of p53, but not growth inhibition or apoptosis suggesting transcription-independent p53 activity. This was supported by immunoprecipitation assays which demonstrated disassociation of p53/BclXL and PUMA/BclXL and formation of complexes with Bak followed by cytochrome c release. Treated animals grew smaller tumors with increased cellular apoptosis than those fed control diet. These results suggest that despite deactivating mutation, p53 retains some of its function which is augmented following treatment with apigenin. Cell cycle arrest and apoptosis induction may be mediated by transcription-independent p53 function via interactions with BclXL and PUMA. Further study of flavonoids as chemotherapeutics is warranted.


Nutrition and Cancer | 2013

Ellagic Acid and Embelin Affect Key Cellular Components of Pancreatic Adenocarcinoma, Cancer, and Stellate Cells

Mouad Edderkaoui; Aurelia Lugea; Hongxiang Hui; Guido Eibl; Qing-Yi Lu; Aune Moro; Xuyang Lu; Gang Li; Vay-Liang W. Go; Stephen J. Pandol

Ellagic acid is a polyphenolic phytochemical present in many fruits and nuts with anticancer properties demonstrated in experimental tumor studies. Embelin is a benzoquinone phytochemical isolated from the Japanese herb Ardisiae Japonicae and has been shown to induce apoptosis in cancer cells. We found that ellagic acid and embelin each dose-dependently increased apoptosis and inhibited proliferation in human pancreatic cancer cells, MIA PaCa-2 and HPAF-II cells, and in pancreatic stellate cells, which are progenitors of pancreatic cancer desmoplasia. In each of these cell types, combinations of ellagic acid and embelin at low micromolar concentrations (0.5–3 μM) induced synergistic increases in apoptosis and decreases in proliferation. Ellagic acid decreased NF-κB transcriptional activity, whereas embelin decreased STAT-3 phosphorylation and protein expression of its downstream target survivin in cancer cells. In vivo dietary ellagic acid alone or in combination with embelin decreased tumor size and tumor cellularity in a subcutaneous xenograft mouse model of pancreatic cancer. These results show that ellagic acid and embelin interact with divergent intracellular signaling pathways resulting in augmentation of apoptosis and inhibition of proliferation at low micromolar concentrations for the key cellular components of pancreatic adenocarcinoma.

Collaboration


Dive into the Aune Moro's collaboration.

Top Co-Authors

Avatar

Guido Eibl

University of California

View shared research outputs
Top Co-Authors

Avatar

David Heber

University of California

View shared research outputs
Top Co-Authors

Avatar

Hui-Hua Chang

University of California

View shared research outputs
Top Co-Authors

Avatar

Aurelia Lugea

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Oscar J. Hines

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge