Aurelio Serrano
University of Seville
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aurelio Serrano.
Journal of Bacteriology | 2004
Rosa L. López-Marqués; José R. Pérez-Castiñeira; Manuel Losada; Aurelio Serrano
Soluble and membrane-bound inorganic pyrophosphatases (sPPase and H(+)-PPase, respectively) of the purple nonsulfur bacterium Rhodospirillum rubrum are differentially regulated by environmental growth conditions. Both proteins and their transcripts were found in cells of anaerobic phototrophic batch cultures along all growth phases, although they displayed different time patterns. However, in aerobic cells that grow in the dark, which exhibited the highest growth rates, Northern and Western blot analyses as well as activity assays demonstrated high sPPase levels but no H(+)-PPase. It is noteworthy that H(+)-PPase is highly expressed in aerobic cells under acute salt stress (1 M NaCl). H(+)-PPase was also present in anaerobic cells growing at reduced rates in the dark under either fermentative or anaerobic respiratory conditions. Since H(+)-PPase was detected not only under all anaerobic growth conditions but also under salt stress in aerobiosis, the corresponding gene is not invariably repressed by oxygen. Primer extension analyses showed that, under all anaerobic conditions tested, the R. rubrum H(+)-PPase gene utilizes two activator-dependent tandem promoters, one with an FNR-like sequence motif and the other with a RegA motif, whereas in aerobiosis under salt stress, the H(+)-PPase gene is transcribed from two further tandem promoters involving other transcription factors. These results demonstrate a tight transcriptional regulation of the H(+)-PPase gene, which appears to be induced in response to a variety of environmental conditions, all of which constrain cell energetics.
Proceedings of the National Academy of Sciences of the United States of America | 2002
José R. Pérez-Castiñeira; Rosa L. López-Marqués; José M. Villalba; Manuel Losada; Aurelio Serrano
Two types of proteins that hydrolyze inorganic pyrophosphate (PPi), very different in both amino acid sequence and structure, have been characterized to date: soluble and membrane-bound proton-pumping pyrophosphatases (sPPases and H+-PPases, respectively). sPPases are ubiquitous proteins that hydrolyze PPi releasing heat, whereas H+-PPases, so far unidentified in animal and fungal cells, couple the energy of PPi hydrolysis to proton movement across biological membranes. The budding yeast Saccharomyces cerevisiae has two sPPases that are located in the cytosol and in the mitochondria. Previous attempts to knock out the gene coding for a cytosolic sPPase (IPP1) have been unsuccessful, thus suggesting that this protein is essential for growth. Here, we describe the generation of a conditional S. cerevisiae mutant (named YPC-1) whose functional IPP1 gene is under the control of a galactose-dependent promoter. Thus, YPC-1 cells become growth arrested in glucose but they regain the ability to grow on this carbon source when transformed with autonomous plasmids bearing diverse foreign H+-PPase genes under the control of a yeast constitutive promoter. The heterologously expressed H+-PPases are distributed among different yeast membranes, including the plasma membrane, functional complementation by these integral membrane proteins being consistently sensitive to external pH. These results demonstrate that hydrolysis of cytosolic PPi is essential for yeast growth and that this function is not substantially affected by the intrinsic characteristics of the PPase protein that accomplishes it. Moreover, this is, to our knowledge, the first direct evidence that H+-PPases can mediate net hydrolysis of PPi in vivo. YPC-1 mutant strain constitutes a convenient expression system to perform studies aimed at the elucidation of the structure–function relationships of this type of proton pumps.
Analytical Biochemistry | 1982
Aurelio Serrano; J. Rivas
Abstract A simple and rapid method for the purification to homogeneity of ferredoxin-NADP+ oxidoreductase (EC 1.18.1.2) from the nitrogen-fixing filamentous cyanobacterium Anabaena sp. strain 7119 is described. A crude extract prepared by solubilizing the cells with a detergent was first partially purified on a DEAE-cellulose column and then chromatographed on 2′,5′-ADP-Sepharose 4B. Ligand-bound ferredoxin-NADP+ oxidoreductase was eluted by a linear gradient of NaCl. The overall procedure provided an enzyme purified about 400-fold with a yield of 60 to 70%. The final enzyme preparation exhibited a specific activity of 120 units/mg protein and an absorbance ratio A 280 A 458 of 8.26. The enzyme protein migrated as a single band when subjected to polyacrylamide gel electrophoresis and chromatographed as a single isoelectric species under chromatofocusing.
Archive | 2013
Ilham Mardad; Aurelio Serrano; Abdelaziz Soukri; Américo Vespucio
Three efficient inorganic-phosphate solubilizing bacteria (PSB) were isolated from a phosphate rock deposit of a Moroccan mine. The phosphate solubilization index of these isolates, determined in National Botanical Research Institutes phosphate (NBRIP) medium supplemented with tribasic calcium phosphate, ranging from 2.8 to 4.4. The medium pH dropped from 7.0 to 3.5 units after growth under continuous agitation for seven days. PSB6, the most efficient PSB, closely related to
Biochemical Journal | 2011
José R. Pérez-Castiñeira; Agustín Hernández; Rocío Drake; Aurelio Serrano
V-ATPases (vacuolar H+-ATPases) are a specific class of multi-subunit pumps that play an essential role in the generation of proton gradients across eukaryotic endomembranes. Another simpler proton pump that co-localizes with the V-ATPase occurs in plants and many protists: the single-subunit H+-PPase [H+-translocating PPase (inorganic pyrophosphatase)]. Little is known about the relative contribution of these two proteins to the acidification of intracellular compartments. In the present study, we show that the expression of a chimaeric derivative of the Arabidopsis thaliana H+-PPase AVP1, which is preferentially targeted to internal membranes of yeast, alleviates the phenotypes associated with V-ATPase deficiency. Phenotypic complementation was achieved both with a yeast strain with its V-ATPase specifically inhibited by bafilomycin A1 and with a vma1-null mutant lacking a catalytic V-ATPase subunit. Cell staining with vital fluorescent dyes showed that AVP1 recovered vacuole acidification and normalized the endocytic pathway of the vma mutant. Biochemical and immunochemical studies further demonstrated that a significant fraction of heterologous H+-PPase is located at the vacuolar membrane. These results raise the question of the occurrence of distinct proton pumps in certain single-membrane organelles, such as plant vacuoles, by proving yeast V-ATPase activity dispensability and the capability of H+-PPase to generate, by itself, physiologically suitable internal pH gradients. Also, they suggest new ways of engineering macrolide drug tolerance and outline an experimental system for testing alternative roles for fungal and animal V-ATPases, other than the mere acidification of subcellular organelles.
Planta | 2005
Federico Valverde; José M. Ortega; Manuel Losada; Aurelio Serrano
ABSTRACTPartial cDNAs corresponding to the GapA, GapC and GapN genes that encode the three different glyceraldehyde-3-phosphate dehydrogenases (GAPDHs) of the green microalga Scenedesmus vacuolatus SAG 211-8b have been cloned and characterized. Northern blot experiments, as well as immunoblots and activity measurements, demonstrate a differential regulation by sugars of the components of the algal Gap gene system. Addition of glucose or other metabolizable sugars to photoautotrophic cultures promoted a drastic repression of the GapA gene and depletion to negligible levels of the corresponding GAPDHA, a chloroplastic protein involved in photosynthetic CO2 assimilation. By contrast, expression of the GapC and GapN genes encoding their cytosolic counterparts involved in glycolysis was enhanced. However, no down-regulation of the GapA gene by glucose took place in the dark, indicating that the observed effect is associated with sugar assimilation in the light. Likewise, glucose promoted in illuminated algal cultures a severe decrease of photosystem II functionality, estimated by O2 evolution activity, thermoluminescence emission and D1 protein level, while again, no effect was observed in the dark. On the basis of the correlation found between photosystem II performance and sugar transcriptional regulation of the GapA gene, a scenario of sugar-mediated regulation of photosynthetic metabolism in microalgae is proposed that will help to explain the so-called glucose bleaching effect in photosynthetic eukaryotes.
World Journal of Microbiology & Biotechnology | 2016
T. Albi; Aurelio Serrano
Inorganic polyphosphates (polyP) are linear polymers of tens to hundreds orthophosphate residues linked by phosphoanhydride bonds. These fairly abundant biopolymers occur in all extant forms of life, from prokaryotes to mammals, and could have played a relevant role in prebiotic evolution. Since the first identification of polyP deposits as metachromatic or volutin granules in yeasts in the nineteenth century, an increasing number of varied physiological functions have been reported. Due to their “high energy” bonds analogous to those in ATP and their properties as polyanions, polyP serve as microbial phosphagens for a variety of biochemical reactions, as a buffer against alkalis, as a storage of Ca2+ and as a metal-chelating agent. In addition, recent studies have revealed polyP importance in signaling and regulatory processes, cell viability and proliferation, pathogen virulence, as a structural component and chemical chaperone, and as modulator of microbial stress response. This review summarizes the current status of knowledge and future perspectives of polyP functions and their related enzymes in the microbial world.
Photosynthesis Research | 1981
Aurelio Serrano; J. Rivas; Manuel Losada
The effect of nitrate and nitrite on long-term chlorophyll fluorescence has been studied in filamentous blue-green algae. Cells grown autotrophically with nitrate as nitrogen source show, under argon atmosphere, a high level of fluorescence. The addition of either nitrete or nitrite induces a significant fluorescence quenching, but, whereas in the case of nitrite no previous treatment is required, in the case of nitrate the cells have to be sonicated or treated with Triton X-100 in advance without destroying their cellular integrity. DCMUAbbreviations: BQ, p-benzoquinone; DCMU, 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea; FCCP, carbonylcyanide 4-trifluoromethoxyphenylhydrazone; FeCy, potassium ferricyanide. strongly inhibits the quenching of fluorescence caused by nitrate or nitrite. Using cells grown with ammonia, a nutritional repressor of the two enzymes of the nitrate-reducing system, the fluorescence quenching observed in either case becomes negligible. These results clearly indicate that both nitrate and nitrite can physiologically act as primary Hill reagents in photosynthesis in blue-green algae.RésuméLeffect du nitrate et du nitrite sur la fluorescence de la chlorophylle a été étudié chez quelques algues bleues filameneuses. Les cellules alimentées avec du nitrate montrent, sous argon, un haut niveau de fluorescence. Laddition de quantités égales de nitrate et de nitrite induit une diminution significative de la fluorescence, mais si, dans le cas du nitrite, un traitement préalable nest pas nécessaire, dans le cas du nitrace, les cellules doivent être traitées légèrement aux ultra sons ou avec du Triton X-100, sans détruire leur intégrité cellulaire. Le DCMU inhibe sévèrement la diminution de fluorescence causée par le nitrate ou le nitrite. Dans les cellules alimentées avec lammoniaque, un répresseur des deux enzymes du système de réduction du nitrate, la diminution de fluorescence devient negligeable quel que soit le composé employé. Enfin, ces résultats montrent clairement que tant le nitrate que le nitrite peuvent être des réactifs primaires et physiologiques de la réaction de Hill dans la photosynthèse de nitrate en algues bleues.
Planta | 1993
Aurelio Serrano; A. Llobell
Two isoforms (isoenzymes) of glutathione reductase (NADPH: oxidized glutathione oxidoreductase, EC 1.6.4.2; GR) were clearly resolved when enzyme preparations partially purified from the unicellular alga Chlamydomonas reinhardtii were subjected to column chromatofocusing in the pH range from 8 to 4. One isoform (GR I) exhibited an almost electroneutral isoelectric point (pI, 6.9–7.1) and the other (GR II) was a very acidic protein (pI, 4.7–4.9). Both GRs are, however, homodimeric flavoproteins with similar molecular masses of approx. 127 kDa. Cross-reaction with an antibody against the cyanobacterial GR allowed determination of their subunit molecular masses by Western blotting after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, a value of 66 kDa being estimated in both cases. The two algal GR isoforms showed similar Km values for the oxidized form of glutathione (approx. 50 μM). However, the Km values for NADPH were different, being 7 μM and 28 μM for GR I and GR II, respectively. The two isoforms also differed in their optimum pH. Thus, whereas GR I showed a clear maximum at neutral pH, GR II exhibited a broader optimum around pH 8.5 and was more active in the alkaline range. The relative contribution of the two isoforms to the total activity in enzyme preparations of cells disrupted by two different methods indicates that GR I should be a cytoplasmic isoform and GR II a plastidic isoform. The physiological roles of the GR isoenzymes found in Chlamydomonas are discussed and some of their properties compared with those of GRs isolated from other photosynthetic organisms.
Analytical Biochemistry | 1986
Aurelio Serrano
Chromatofocusing has been used as an analytical tool to check preparations of the enzyme ferredoxin-NADP+ oxidoreductase (EC 1.18.1.2) purified in either the presence or absence of the serine protease inhibitor phenylmethylsulfonyl fluoride from the cyanobacterium Anabaena sp. strain 7119. Only one isoelectric species was found when the crude extract was processed in the presence of the protease inhibitor. Nevertheless, when the inhibitor was omitted, four ionic forms of the enzyme--showing apparent pIs in the range 4.3-4.6--were separated after chromatofocusing of the purified preparation. These forms were found to differ in their specific activities, exhibiting, on the other hand, lower values than the single one obtained in the presence of the protease inhibitor. Analysis by acrylamide gel electrophoresis revealed virtually a single main protein band except for the ionic form of pI 4.39, which was clearly resolved into two active components. Except for the more basic form, which seems to be an homodimer of Mr 80,000, all the protein components were found to be monomeric species in the range Mr 33,000-38,000. These results indicate that the molecular heterogeneity of the ferredoxin-NADP+ oxidoreductase purified from the cyanobacterium Anabaena sp. strain 7119 may result from the activity of a protease present in the whole cell homogenates. On the other hand, these data also point out that chromatofocusing should be considered as an effective technique in the isolation and characterization of the different molecular forms of this enzyme.