Federico Valverde
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Federico Valverde.
Nature | 2001
Paula Suárez-López; Kay Wheatley; Frances Robson; Hitoshi Onouchi; Federico Valverde; George Coupland
Flowering is often triggered by exposing plants to appropriate day lengths. This response requires an endogenous timer called the circadian clock to measure the duration of the day or night. This timer also controls daily rhythms in gene expression and behavioural patterns such as leaf movements. Several Arabidopsis mutations affect both circadian processes and flowering time; but how the effect of these mutations on the circadian clock is related to their influence on flowering remains unknown. Here we show that expression of CONSTANS (CO), a gene that accelerates flowering in response to long days, is modulated by the circadian clock and day length. Expression of a CO target gene, called FLOWERING LOCUS T (FT), is restricted to a similar time of day as expression of CO. Three mutations that affect circadian rhythms and flowering time alter CO and FT expression in ways that are consistent with their effects on flowering. In addition, the late flowering phenotype of such mutants is corrected by overexpressing CO. Thus, CO acts between the circadian clock and the control of flowering, suggesting mechanisms by which day length regulates flowering time.
The EMBO Journal | 2002
Shelley R. Hepworth; Federico Valverde; Dean Ravenscroft; Aidyn Mouradov; George Coupland
Flowering in Arabidopsis is controlled by endogenous and environmental signals relayed by distinct genetic pathways. The MADS‐box flowering‐time gene SOC1 is regulated by several pathways and is proposed to co‐ordinate responses to environmental signals. SOC1 is directly activated by CONSTANS (CO) in long photoperiods and is repressed by FLC, a component of the vernalization (low‐temperature) pathway. We show that in transgenic plants overexpressing CO and FLC, these proteins regulate flowering time antagonistically and FLC blocks transcriptional activation of SOC1 by CO. A series of SOC1::GUS reporter genes identified a 351 bp promoter sequence that mediates activation by CO and repression by FLC. A CArG box (MADS‐domain protein binding element) within this sequence was recognized specifically by FLC in vitro and mediated repression by FLC in vivo, suggesting that FLC binds directly to the SOC1 promoter. We propose that CO is recruited to a separate promoter element by a DNA‐binding factor and that activation by CO is impaired when FLC is bound to an adjacent CArG motif.
The EMBO Journal | 2008
Seonghoe Jang; Virginie Marchal; Kishore C.S. Panigrahi; Stephan Wenkel; Wim J. J. Soppe; Xing Wang Deng; Federico Valverde; George Coupland
The transcriptional regulator CONSTANS (CO) promotes flowering of Arabidopsis under long summer days (LDs) but not under short winter days (SDs). Post‐translational regulation of CO is crucial for this response by stabilizing the protein at the end of a LD, whereas promoting its degradation throughout the night under LD and SD. We show that mutations in CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a component of a ubiquitin ligase, cause extreme early flowering under SDs, and that this is largely dependent on CO activity. Furthermore, transcription of the CO target gene FT is increased in cop1 mutants and decreased in plants overexpressing COP1 in phloem companion cells. COP1 and CO interact in vivo and in vitro through the C‐terminal region of CO. COP1 promotes CO degradation mainly in the dark, so that in cop1 mutants CO protein but not CO mRNA abundance is dramatically increased during the night. However, in the morning CO degradation occurs independently of COP1 by a phytochrome B‐dependent mechanism. Thus, COP1 contributes to day length perception by reducing the abundance of CO during the night and thereby delaying flowering under SDs.
BMC Genomics | 2016
Francisco José Romero-Campero; Ignacio Pérez-Hurtado; Eva Lucas-Reina; José M. Romero; Federico Valverde
BackgroundChlamydomonas reinhardtii is the model organism that serves as a reference for studies in algal genomics and physiology. It is of special interest in the study of the evolution of regulatory pathways from algae to higher plants. Additionally, it has recently gained attention as a potential source for bio-fuel and bio-hydrogen production. The genome of Chlamydomonas is available, facilitating the analysis of its transcriptome by RNA-seq data. This has produced a massive amount of data that remains fragmented making necessary the application of integrative approaches based on molecular systems biology.ResultsWe constructed a gene co-expression network based on RNA-seq data and developed a web-based tool, ChlamyNET, for the exploration of the Chlamydomonas transcriptome. ChlamyNET exhibits a scale-free and small world topology. Applying clustering techniques, we identified nine gene clusters that capture the structure of the transcriptome under the analyzed conditions. One of the most central clusters was shown to be involved in carbon/nitrogen metabolism and signalling, whereas one of the most peripheral clusters was involved in DNA replication and cell cycle regulation. The transcription factors and regulators in the Chlamydomonas genome have been identified in ChlamyNET. The biological processes potentially regulated by them as well as their putative transcription factor binding sites were determined. The putative light regulated transcription factors and regulators in the Chlamydomonas genome were analyzed in order to provide a case study on the use of ChlamyNET. Finally, we used an independent data set to cross-validate the predictive power of ChlamyNET.ConclusionsThe topological properties of ChlamyNET suggest that the Chlamydomonas transcriptome posseses important characteristics related to error tolerance, vulnerability and information propagation. The central part of ChlamyNET constitutes the core of the transcriptome where most authoritative hub genes are located interconnecting key biological processes such as light response with carbon and nitrogen metabolism. Our study reveals that key elements in the regulation of carbon and nitrogen metabolism, light response and cell cycle identified in higher plants were already established in Chlamydomonas. These conserved elements are not only limited to transcription factors, regulators and their targets, but also include the cis-regulatory elements recognized by them.
The Plant Cell | 2012
Ana Lázaro; Federico Valverde; Manuel Piñeiro; José A. Jarillo
The transcriptional and posttranslational regulation of CONSTANS (CO) expression is crucial to accurately measure changes in daylength that influence flowering time in Arabidopsis thaliana. Here, we demonstrate that ESD6/HOS1 is required to modulate precisely the timing of CO accumulation to maintain low levels of FT expression during the first part of the day and a correct photoperiodic response. The Arabidopsis thaliana early in short days6 (esd6) mutant was isolated in a screen for mutations that accelerate flowering time. Among other developmental alterations, esd6 displays early flowering in both long- and short-day conditions. Fine mapping of the mutation showed that the esd6 phenotype is caused by a lesion in the HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1) locus, which encodes a RING finger–containing E3 ubiquitin ligase. The esd6/hos1 mutation causes decreased FLOWERING LOCUS C expression and requires CONSTANS (CO) protein for its early flowering phenotype under long days. Moreover, CO and HOS1 physically interact in vitro and in planta, and HOS1 regulates CO abundance, particularly during the daylight period. Accordingly, hos1 causes a shift in the regular long-day pattern of expression of FLOWERING LOCUS T (FT) transcript, starting to rise 4 h after dawn in the mutant. In addition, HOS1 interacts synergistically with CONSTITUTIVE PHOTOMORPHOGENIC1, another regulator of CO protein stability, in the regulation of flowering time. Taken together, these results indicate that HOS1 is involved in the control of CO abundance, ensuring that CO activation of FT occurs only when the light period reaches a certain length and preventing precocious flowering in Arabidopsis.
Journal of Experimental Botany | 2011
Federico Valverde
A network of promoting and inhibiting pathways that respond to environmental and internal signals controls the flowering transition. The outcome of this regulatory network establishes, for any particular plant, the correct time of the year to flower. The photoperiod pathway channels inputs from light, day length, and the circadian clock to promote the floral transition. CONSTANS (CO) is a central regulator of this pathway, triggering the production of the mobile florigen hormone FT (FLOWERING LOCUS T) that induces flower differentiation. Because plant reproductive fitness is directly related to its capacity to flower at a precise time, the photoperiod pathway is present in all known plant species. Recent findings have stretched the evolutionary span of this photophase signal to unicellular algae, which show unexpected conserved characteristics with modern plant photoperiodic responses. In this review, a comparative description of the photoperiodic systems in algae and plants will be presented and a general role for the CO family of transcriptional activators proposed.
Current Biology | 2009
Gloria Serrano; Rosana Herrera-Palau; José M. Romero; Aurelio Serrano; George Coupland; Federico Valverde
BACKGROUND The circadian clock controls several important processes in plant development, including the phase transition from vegetative growth to flowering. In Arabidopsis thaliana, the circadian-regulated gene CONSTANS (CO) plays a central role in the photoperiodic control of the floral transition, one of the most conserved flowering responses among distantly related plants. CO is a member of a plant-specific family of transcription factors, and when it arose during the evolution of higher plants is unclear. RESULTS A CO homologous gene present in the genome of the unicellular green alga Chlamydomonas reinhardtii (CrCO) can complement the Arabidopsis co mutation and promote early flowering in wild-type plants when expressed under different promoters. Transcript levels of FLOWERING LOCUS T (FT), the main target of CO, are increased in CrCO transgenic plants in a way similar to those in plants overexpressing CO. In the microalga, expression of CrCO is influenced by day length and the circadian clock, being higher in short photoperiods. Reduction of CrCO expression in Chlamydomonas by RNA interference induces defects in culture growth, whereas algae induced to express high levels of CrCO show alterations in several circadian output processes, such as starch accumulation and the onset of expression of genes that regulate the cell cycle. CONCLUSIONS The effects observed may reflect a conserved role for CrCO in the coordination of processes regulated by photoperiod and the circadian clock. Our data indicate that CO orthologs probably represent ancient regulators of photoperiod-dependent events and that these regulators arose early in the evolutionary lineage that gave rise to flowering plants.
Plant Physiology | 2008
Tiziana Ventriglia; Misty L. Kuhn; Ma Teresa Ruiz; Marina Ribeiro-Pedro; Federico Valverde; Miguel A. Ballicora; Jack Preiss; José M. Romero
ADP-glucose (Glc) pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in starch biosynthesis. Higher plant ADP-Glc PPase is a heterotetramer (α2β2) consisting of two small and two large subunits. There is increasing evidence that suggests that catalytic and regulatory properties of the enzyme from higher plants result from the synergy of both types of subunits. In Arabidopsis (Arabidopsis thaliana), two genes encode small subunits (APS1 and APS2) and four large subunits (APL1–APL4). Here, we show that in Arabidopsis, APL1 and APL2, besides their regulatory role, have catalytic activity. Heterotetramers formed by combinations of a noncatalytic APS1 and the four large subunits showed that APL1 and APL2 exhibited ADP-Glc PPase activity with distinctive sensitivities to the allosteric activator (3-phosphoglycerate). Mutation of the Glc-1-P binding site of Arabidopsis and potato (Solanum tuberosum) isoforms confirmed these observations. To determine the relevance of these activities in planta, a T-DNA mutant of APS1 (aps1) was characterized. aps1 is starchless, lacks ADP-Glc PPase activity, APS1 mRNA, and APS1 protein, and is late flowering in long days. Transgenic lines of the aps1 mutant, expressing an inactivated form of APS1, recovered the wild-type phenotype, indicating that APL1 and APL2 have catalytic activity and may contribute to ADP-Glc synthesis in planta.
Protein Expression and Purification | 2002
Abdelghani Iddar; Federico Valverde; Aurelio Serrano; Abdelaziz Soukri
Clostridium acetobutylicum gapN was cloned and expressed in Escherichia coli BL-21. The IPTG-induced nonphosphorylating NADP-dependent GAPDH (GAPN) has been purified about 34-fold from E. coli cells and its physical and kinetic properties were investigated. The purification method consisted of a rapid and straightforward procedure involving anion-exchange and hydroxyapatite chromatographies. The purified protein is an homotetrameric of 204kDa exhibiting absolute specificity for NADP. Chromatofocusing analysis showed the presence of only one acidic GAPN isoform with an acid isoelectric point of 4.2. The optimum pH of purified enzyme was 8.2. Studies on the effect of assay temperature on enzyme activity revealed an optimal value of about 65 degrees C with activation energy of 18KJmol(-1). The apparent K(m) values for NADP and D-glyceraldehyde-3-phosphate (D-G3P) or DL-G3P were estimated to be 0.200+/-0.05 and 0.545+/-0.1 mM, respectively. No inhibition was observed with L-D3P. The V(max) of the purified protein was estimated to be 78.8 U mg(-1). The Cl. acetobutylicum GAPN was markedly inhibited by sulfhydryl-modifying reagent iodoacetamide, these results suggest the participation of essential sulfhydryl groups in the catalytic activity.
Biochimica et Biophysica Acta | 1995
Abdelaziz Soukri; Federico Valverde; Nezha Hafid; Mohamed S Elkebbaj; Aurelio Serrano
The specific activity of D-glyceraldehyde-3-phosphate (G3P) dehydrogenase (phosphorylating) (GPDH, EC 1.2.1.12) found in skeletal muscle of induced hibernating jerboa (Jaculus orientalis) was 3-4-fold lower than in the euthermic animal. The comparative analysis of the soluble protein fraction of these tissues by SDS-PAGE and Western blotting showed a significant decrease in the intensity of a protein band of about 36 kDa, the GPDH subunit, in hibernating jerboa. After using the same purification procedure, the GPDH from muscle of hibernating jerboa exhibited lower values for both apparent optimal temperature and specific activity than the enzyme from the euthermic animal. Non-linear Arrhenius plots were obtained in both cases, but the Ea values calculated for the GPDH from hibernating tissue were higher. Although in both purified enzyme preparations three isoelectric GPDH isoforms, exhibiting pI values in the range 8.2-7.5, were resolved by chromatofocusing, clear differences were observed in these preparations concerning the relative contribution to the total enzymatic activity of the two main isoforms, named GPDH I (pI values, 8.1-8.2) and GPDH II (pI values, 7.8-7.9). Thus, whereas GPDH I was the major isoform purified from euthermic muscle, accounting for more than 90% of the total activity, the amount of activity due to GPDH II reached up to 65% in preparations of hibernating jerboa. All isoforms exhibited similar native and subunit molecular masses and cross-reacted with an anti-GPDH antibody raised against the GPDH I. However, the two muscle GPDH isoforms prevailing under hibernating conditions exhibited a decreased catalytic efficiency when compared with the corresponding major isoforms purified from euthermic animals, as indicated by their different specific activities and kinetic parameters, i.e. relatively high Km and low Vmax values. Since the glycolytic flow has been found to be widely reduced in skeletal muscle of induced hibernating jerboa, the changes in the GPDH isoforms described in the present study could provide a molecular basis to explain some of the metabolic changes associated with mammalian hibernation.