T. Albi
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. Albi.
Journal of the American Oil Chemists' Society | 1994
A. Lanzon; T. Albi; Arturo Cert; Jaime Gracián
In numerous Spanish virgin olive oils, 6,10-dimethyl-1-undecene, various sesquiterpenes, the series ofn-alkanes from C14 to C35, n-8-heptadecene and squalene are the only less volatile components detected by gas chromatography in the hydrocarbon fraction. In oils from olives of the Arbequine variety, a series ofn-9-alkenes has also been found. In refined oils, notable features are the absence of the most volatile compounds and the appearance of other hydrocarbons produced during the refining process. Among these,n-alkanes, alkadienes (mainlyn-hexacosadiene), stigmasta-3,5-diene, isomerization products of squalene, isoprenoidal polyolefins coming from hydroxy derivatives of squalene and steroidal hydrocarbons derived from 24-methylene cycloartanol were identified. Physical refining produces larger amounts of degradation products and greater losses ofn-alkanes than chemical processing. Squalene is the major hydrocarbon component in all oils, both virgin and refined. The ranges of concentration for the different hydrocarbons found in Spanish virgin olive oils are presented.
Food Chemistry | 1994
Arturo Cert; A. Lanzon; Amalia A. Carelli; T. Albi; Giovanni Amelotti
Abstract The formation of stigmasta-3,5-diene (STIG) in vegetable oils from beta-sitosterol was investigated. Previously, analytical methods for STIG determination were developed and verified. For virgin olive oil and crude vegetable oils, the usual oil production processes (pressure, centrifuging and solvent extraction) and long term storage did not produce measurable amounts of STIG, except in the case of crude olive pomace oils where small quantities arose as a result of the high temperature applied to the solid residues during the drying operation. The influence on STIG generation of variables affecting the refining processes was studied. Although minor amounts of STIG appeared after only heating the oil, this compound was produced mainly during the bleaching earth treatment. The decoloration temperature and the bleaching earth activity were the most important variables involved in STIG formation. After deodorising, carried out under normal conditions, the refined olive oils retained measurable amounts of STIG. The refining of other vegetable oils with high beta-sitosterol content (such as sunflower, rapeseed and soya oils) also rendered considerable amounts of STIG. These results support the method based on STIG determination for detecting low percentages of refined vegetable oils in virgin olive oils and crude seed oils.
The Plant Cell | 2014
M. Isabel Ortiz-Marchena; T. Albi; Eva Lucas-Reina; Fatima E. Said; Francisco José Romero-Campero; Beatriz Cano; M. Teresa Ruiz; José M. Romero; Federico Valverde
The distribution of carbon resources from starch to soluble sugars is crucial to fuel the diverse physiological processes that take place during the floral transition. A multidisciplinary study supports the control of sugar mobilization in Arabidopsis during photoperiodic flowering through regulation of GRANULE BOUND STARCH SYNTHASE expression by the key photoperiodic regulator CONSTANS. Flowering is a crucial process that demands substantial resources. Carbon metabolism must be coordinated with development through a control mechanism that optimizes fitness for any physiological need and growth stage of the plant. However, how sugar allocation is controlled during the floral transition is unknown. Recently, the role of a CONSTANS (CO) ortholog (Cr-CO) in the control of the photoperiod response in the green alga Chlamydomonas reinhardtii and its influence on starch metabolism was demonstrated. In this work, we show that transitory starch accumulation and glycan composition during the floral transition in Arabidopsis thaliana are regulated by photoperiod. Employing a multidisciplinary approach, we demonstrate a role for CO in regulating the level and timing of expression of the GRANULE BOUND STARCH SYNTHASE (GBSS) gene. Furthermore, we provide a detailed characterization of a GBSS mutant involved in transitory starch synthesis and analyze its flowering time phenotype in relation to its altered capacity to synthesize amylose and to modify the plant free sugar content. Photoperiod modification of starch homeostasis by CO may be crucial for increasing the sugar mobilization demanded by the floral transition. This finding contributes to our understanding of the flowering process.
World Journal of Microbiology & Biotechnology | 2016
T. Albi; Aurelio Serrano
Inorganic polyphosphates (polyP) are linear polymers of tens to hundreds orthophosphate residues linked by phosphoanhydride bonds. These fairly abundant biopolymers occur in all extant forms of life, from prokaryotes to mammals, and could have played a relevant role in prebiotic evolution. Since the first identification of polyP deposits as metachromatic or volutin granules in yeasts in the nineteenth century, an increasing number of varied physiological functions have been reported. Due to their “high energy” bonds analogous to those in ATP and their properties as polyanions, polyP serve as microbial phosphagens for a variety of biochemical reactions, as a buffer against alkalis, as a storage of Ca2+ and as a metal-chelating agent. In addition, recent studies have revealed polyP importance in signaling and regulatory processes, cell viability and proliferation, pathogen virulence, as a structural component and chemical chaperone, and as modulator of microbial stress response. This review summarizes the current status of knowledge and future perspectives of polyP functions and their related enzymes in the microbial world.
Frontiers in Plant Science | 2016
Agustín Hernández; Rosana Herrera-Palau; Juan M. Madroñal; T. Albi; Guillermo López-Lluch; José R. Pérez-Castiñeira; Plácido Navas; Federico Valverde; Aurelio Serrano
Amine fungicides are widely used as crop protectants. Their success is believed to be related to their ability to inhibit postlanosterol sterol biosynthesis in fungi, in particular sterol-Δ8,Δ7-isomerases and sterol-Δ14-reductases, with a concomitant accumulation of toxic abnormal sterols. However, their actual cellular effects and mechanisms of death induction are still poorly understood. Paradoxically, plants exhibit a natural resistance to amine fungicides although they have similar enzymes in postcicloartenol sterol biosynthesis that are also susceptible to fungicide inhibition. A major difference in vacuolar ion homeostasis between plants and fungi is the presence of a dual set of primary proton pumps in the former (V-ATPase and H+-pyrophosphatase), but only the V-ATPase in the latter. Abnormal sterols affect the proton-pumping capacity of V-ATPases in fungi and this has been proposed as a major determinant in fungicide action. Using Saccharomyces cerevisiae as a model fungus, we provide evidence that amine fungicide treatment induced cell death by apoptosis. Cell death was concomitant with impaired H+-pumping capacity in vacuole vesicles and dependent on vacuolar proteases. Also, the heterologous expression of the Arabidopsis thaliana main H+-pyrophosphatase (AVP1) at the fungal vacuolar membrane reduced apoptosis levels in yeast and increased resistance to amine fungicides. Consistently, A. thaliana avp1 mutant seedlings showed increased susceptibility to this amine fungicide, particularly at the level of root development. This is in agreement with AVP1 being nearly the sole H+-pyrophosphatase gene expressed at the root elongation zones. All in all, the present data suggest that H+-pyrophosphatases are major determinants of plant tolerance to amine fungicides.
Microbiology | 2014
T. Albi; Aurelio Serrano
The genome of the thermophilic green-sulfur bacterium Chlorobium tepidum TLS possesses two genes encoding putative exopolyphosphatases (PPX; EC 3.6.1.11), namely CT0099 (ppx1, 993 bp) and CT1713 (ppx2, 1557 bp). The predicted polypeptides of 330 and 518 aa residues are Ppx-GppA phosphatases of different domain architectures - the largest one has an extra C-terminal HD domain - which may represent ancient paralogues. Both ppx genes were cloned and overexpressed in Escherichia coli BL21(DE3). While CtPPX1 was validated as a monomeric enzyme, CtPPX2 was found to be a homodimer. Both PPX homologues were functional, K(+)-stimulated phosphohydrolases, with an absolute requirement for divalent metal cations and a marked preference for Mg(2+). Nevertheless, they exhibited remarkably different catalytic specificities with regard to substrate classes and chain lengths. Even though both enzymes were able to hydrolyse the medium-size polyphosphate (polyP) P13-18 (polyP mix with mean chain length of 13-18 phosphate residues), CtPPX1 clearly reached its highest catalytic efficiency with tripolyphosphate and showed substantial nucleoside triphosphatase (NTPase) activity, while CtPPX2 preferred long-chain polyPs (>300 Pi residues) and did not show any detectable NTPase activity. These catalytic features, taken together with the distinct domain architectures and molecular phylogenies, indicate that the two PPX homologues of Chl. tepidum belong to different Ppx-GppA phosphatase subfamilies that should play specific biochemical roles in nucleotide and polyP metabolisms. In addition, these results provide an example of the remarkable functional plasticity of the Ppx-GppA phosphatases, a family of proteins with relatively simple structures that are widely distributed in the microbial world.
PLOS ONE | 2016
T. Albi; M. Teresa Ruiz; Pedro Reyes; Federico Valverde; José M. Romero
Sucrose-phosphate phosphatase (SPP) catalyses the final step in the sucrose biosynthesis pathway. Arabidopsis thaliana genome codifies four SPP isoforms. In this study, the four Arabidopsis thaliana genes coding for SPP isoforms have been cloned, expressed in Escherichia coli and the kinetic and regulatory properties of the purified enzymes analysed. SPP2 is the isoform showing the highest activity, with SPP3b and SPP3a showing lower activity levels. No activity was detected for SPP1. We propose that this lack of activity is probably due to the absence of an essential amino acid participating in catalysis and/or in the binding of the substrate, sucrose-6-phosphate (Suc6P). The expression patterns of Arabidopsis SPP genes indicate that SPP2 and SPP3b are the main isoforms expressed in different tissues and organs, although the non-catalytic SPP1 is the main isoform expressed in roots. Thus, SPP1 could have acquired new unknown functions. We also show that the three catalytically active SPPs from Arabidopsis are dimers. By generating a chimeric SPP composed of the monomeric cyanobacterial SPP fused to the higher plant non-catalytic S6PPc domain (from SPP2), we show that the S6PPc domain is responsible for SPP dimerization. This is the first experimental study on the functionality and gene expression pattern of all the SPPs from a single plant species.
Journal of the American Oil Chemists' Society | 1994
M. Martín-Polvillo; T. Albi; A. Guinda
Grasas Y Aceites | 1989
A. Lanzon; Arturo Cert; T. Albi
Grasas Y Aceites | 1995
A. Lanzon; M. Ángeles Guinda; T. Albi; C. de la Osa