Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. A. Hammel is active.

Publication


Featured researches published by B. A. Hammel.


Physics of Plasmas | 2011

Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility

S. W. Haan; J. D. Lindl; D. A. Callahan; D. S. Clark; J. D. Salmonson; B. A. Hammel; L. J. Atherton; R. Cook; M. J. Edwards; S. H. Glenzer; Alex V. Hamza; S. P. Hatchett; Mark Herrmann; D. E. Hinkel; D. Ho; H. Huang; O. S. Jones; J. L. Kline; G. A. Kyrala; O. L. Landen; B. J. MacGowan; M. M. Marinak; D. D. Meyerhofer; J. L. Milovich; K. A. Moreno; E. I. Moses; David H. Munro; A. Nikroo; R. E. Olson; Kyle Peterson

Point design targets have been specified for the initial ignition campaign on the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. The targets contain D-T fusion fuel in an ablator of either CH with Ge doping, or Be with Cu. These shells are imploded in a U or Au hohlraum with a peak radiation temperature set between 270 and 300 eV. Considerations determining the point design include laser-plasma interactions, hydrodynamic instabilities, laser operations, and target fabrication. Simulations were used to evaluate choices, and to define requirements and specifications. Simulation techniques and their experimental validation are summarized. Simulations were used to estimate the sensitivity of target performance to uncertainties and variations in experimental conditions. A formalism is described that evaluates margin for ignition, summarized in a parameter the Ignition Threshold Factor (ITF). Uncertainty and shot-to-shot variability in ITF are evaluated, and...


Physics of Plasmas | 1998

Hot electron production and heating by hot electrons in fast ignitor research

M.H. Key; M. D. Cable; Thomas E. Cowan; K. G. Estabrook; B. A. Hammel; S. P. Hatchett; E. A. Henry; D. E. Hinkel; J. D. Kilkenny; J. A. Koch; W. L. Kruer; A. B. Langdon; Barbara F. Lasinski; R.W. Lee; B. J. MacGowan; A. J. Mackinnon; J. D. Moody; M. J. Moran; A. A. Offenberger; Deanna M. Pennington; M. D. Perry; T. J. Phillips; Thomas C. Sangster; M. Singh; M. A. Stoyer; Max Tabak; G. L. Tietbohl; M. Tsukamoto; Kenneth Bradford Wharton; S. C. Wilks

In an experimental study of the physics of fast ignition the characteristics of the hot electron source at laser intensities up to 10(to the 20th power) Wcm{sup -2} and the heating produced at depth by hot electrons have been measured. Efficient generation of hot electrons but less than the anticipated heating have been observed.


Physics of Plasmas | 1994

A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion

J. D. Kilkenny; S. G. Glendinning; S. W. Haan; B. A. Hammel; J. D. Lindl; David H. Munro; B. A. Remington; S. V. Weber; J. P. Knauer; C. P. Verdon

It has been recognized for many years that the most significant limitation of inertial confinement fusion (ICF) is the Rayleigh–Taylor (RT) instability. It limits the distance an ablatively driven shell can be moved to several times its initial thickness. Fortunately material flow through the unstable region at velocity vA reduces the growth rate to √kg/1+kL−βkvA with β from 2–3. In recent years experiments using both x‐ray drive and smoothed laser drive to accelerate foils have confirmed the community’s understanding of the ablative RT instability in planar geometry. The growth of small initial modulations on the foils is measured for growth factors up to 60 for direct drive and 80 for indirect drive. For x‐ray drive large stabilization is evident. After some growth, the instability enters the nonlinear phase when mode coupling and saturation are also seen and compare well with modeling. Normalized growth rates for direct drive are measured to be higher, but strategies for reduction by raising the isentr...


Physics of Plasmas | 2011

The experimental plan for cryogenic layered target implosions on the National Ignition Facility—The inertial confinement approach to fusion

M. J. Edwards; J. D. Lindl; B. K. Spears; S. V. Weber; L. J. Atherton; D. L. Bleuel; David K. Bradley; D. A. Callahan; Charles Cerjan; D. S. Clark; G. W. Collins; J. Fair; R. J. Fortner; S. H. Glenzer; S. W. Haan; B. A. Hammel; Alex V. Hamza; S. P. Hatchett; N. Izumi; B. Jacoby; O. S. Jones; J. A. Koch; B. J. Kozioziemski; O. L. Landen; R. A. Lerche; B. J. MacGowan; A. J. Mackinnon; E. R. Mapoles; M. M. Marinak; M. J. Moran

Ignition requires precisely controlled, high convergence implosions to assemble a dense shell of deuterium-tritium (DT) fuel with ρR>∼1 g/cm2 surrounding a 10 keV hot spot with ρR ∼ 0.3 g/cm2. A working definition of ignition has been a yield of ∼1 MJ. At this yield the α-particle energy deposited in the fuel would have been ∼200 kJ, which is already ∼10 × more than the kinetic energy of a typical implosion. The National Ignition Campaign includes low yield implosions with dudded fuel layers to study and optimize the hydrodynamic assembly of the fuel in a diagnostics rich environment. The fuel is a mixture of tritium-hydrogen-deuterium (THD) with a density equivalent to DT. The fraction of D can be adjusted to control the neutron yield. Yields of ∼1014−15 14 MeV (primary) neutrons are adequate to diagnose the hot spot as well as the dense fuel properties via down scattering of the primary neutrons. X-ray imaging diagnostics can function in this low yield environment providing additional information about ...


Physics of Plasmas | 2011

Capsule implosion optimization during the indirect-drive National Ignition Campaign

O. L. Landen; John Edwards; S. W. Haan; H. F. Robey; J. L. Milovich; B. K. Spears; S. V. Weber; D. S. Clark; J. D. Lindl; B. J. MacGowan; E. I. Moses; J. Atherton; Peter A. Amendt; T. R. Boehly; David K. Bradley; David G. Braun; D. A. Callahan; Peter M. Celliers; G. W. Collins; E. L. Dewald; L. Divol; J. A. Frenje; S. H. Glenzer; Alex V. Hamza; B. A. Hammel; D. G. Hicks; Nelson M. Hoffman; N. Izumi; O. S. Jones; J. D. Kilkenny

Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analytic models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown ...


Applied Optics | 1998

High-Energy X-ray Microscopy Techniques for Laser-Fusion Plasma Research at the National Ignition Facility.

J. A. Koch; O. L. Landen; Troy W. Barbee; Peter M. Celliers; L. B. Da Silva; S. G. Glendinning; B. A. Hammel; D. H. Kalantar; C. Brown; John F. Seely; G. R. Bennett; W. W. Hsing

Multi-kilo-electron-volt x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF). However, laser energies and plasma characteristics imply that x-ray microscopy will be more challenging at NIF than at existing facilities. We use analytical estimates and numerical ray tracing to investigate several instrumentation options in detail, and we conclude that near-normal-incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-ray microscopy at NIF and similar large facilities. Apertured Kirkpatrick-Baez microscopes using multilayer mirrors may also be good options, particularly for applications requiring one-dimensional imaging over narrow fields of view.


Physics of Plasmas | 2013

Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facilitya)

D. S. Clark; D. E. Hinkel; David C. Eder; O. S. Jones; S. W. Haan; B. A. Hammel; M. M. Marinak; J. L. Milovich; H. F. Robey; L. J. Suter; R. P. J. Town

More than two dozen inertial confinement fusion ignition experiments with cryogenic deuterium-tritium layers have now been performed on the National Ignition Facility (NIF) [G. H. Miller et al., Opt. Eng. 443, 2841 (2004)]. Each of these yields a wealth of data including neutron yield, neutron down-scatter fraction, burn-averaged ion temperature, x-ray image shape and size, primary and down-scattered neutron image shape and size, etc. Compared to 2-D radiation-hydrodynamics simulations modeling both the hohlraum and the capsule implosion, however, the measured capsule yield is usually lower by a factor of 5 to 10, and the ion temperature varies from simulations, while most other observables are well matched between experiment and simulation. In an effort to understand this discrepancy, we perform detailed post-shot simulations of a subset of NIF implosion experiments. Using two-dimensional HYDRA simulations [M. M. Marinak, et al., Phys. Plasmas 8, 2275 (2001).] of the capsule only, these simulations repre...


Journal of Quantitative Spectroscopy & Radiative Transfer | 2001

Dense Matter Characterization by X-ray Thomson Scattering

O. L. Landen; S. H. Glenzer; M. J. Edwards; R.W. Lee; G. W. Collins; R. Cauble; W. W. Hsing; B. A. Hammel

Abstract We discuss the extension of the powerful technique of Thomson scattering to the X-ray regime for providing an independent measure of plasma parameters for dense plasmas. By spectrally resolving the scattering, the coherent (Rayleigh) unshifted scattering component can be separated from the incoherent Thomson component, which is both Compton and Doppler shifted. The free electron density and temperature can then be inferred from the spectral shape of the high-frequency Thomson scattering component. In addition, as the plasma temperature is decreased, the electron velocity distribution as measured by incoherent Thomson scattering will make a transition from the traditional Gaussian Boltzmann distribution to a density-dependent parabolic Fermi distribution. We also present a discussion for a proof-of-principle experiment appropriate for a high-energy laser facility.


Physics of Plasmas | 2015

Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign

D. S. Clark; M. M. Marinak; C. R. Weber; David C. Eder; S. W. Haan; B. A. Hammel; D. E. Hinkel; O. S. Jones; J. L. Milovich; P. K. Patel; H. F. Robey; J. D. Salmonson; S. M. Sepke; C. A. Thomas

The recently completed National Ignition Campaign (NIC) on the National Ignition Facility (NIF) showed significant discrepancies between post-shot simulations of implosion performance and experimentally measured performance, particularly in thermonuclear yield. This discrepancy between simulation and observation persisted despite concerted efforts to include all of the known sources of performance degradation within a reasonable two-dimensional (2-D), and even three-dimensional (3-D), simulation model, e.g., using measured surface imperfections and radiation drives adjusted to reproduce observed implosion trajectories [Clark et al., Phys. Plasmas 20, 056318 (2013)]. Since the completion of the NIC, several effects have been identified that could explain these discrepancies and that were omitted in previous simulations. In particular, there is now clear evidence for larger than anticipated long-wavelength radiation drive asymmetries and a larger than expected perturbation seeded by the capsule support tent. This paper describes an updated suite of one-dimensional (1-D), 2-D, and 3-D simulations that include the current best understanding of these effects identified since the NIC, as applied to a specific NIC shot. The relative importance of each effect on the experimental observables is compared. In combination, these effects reduce the simulated-to-measured yield ratio from 125:1 in 1-D to 1.5:1 in 3-D, as compared to 15:1 in the best 2-D simulations published previously. While the agreement with the experimental data remains imperfect, the comparison to the data is significantly improved and suggests that the largest sources for the previous discrepancies between simulation and experiment are now being included.


Physics of Plasmas | 2016

Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

D. S. Clark; C. R. Weber; J. L. Milovich; J. D. Salmonson; A. L. Kritcher; S. W. Haan; B. A. Hammel; D. E. Hinkel; O. A. Hurricane; O. S. Jones; M. M. Marinak; P. K. Patel; H. F. Robey; S. M. Sepke; M. J. Edwards

In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This paper describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. For both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.

Collaboration


Dive into the B. A. Hammel's collaboration.

Top Co-Authors

Avatar

O. L. Landen

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. W. Haan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

L. J. Suter

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. S. Clark

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Peter M. Celliers

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. H. Glenzer

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. A. Callahan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

H. F. Robey

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

B. J. MacGowan

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge