Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. J. MacGowan is active.

Publication


Featured researches published by B. J. MacGowan.


Physics of Plasmas | 2011

Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility

S. W. Haan; J. D. Lindl; D. A. Callahan; D. S. Clark; J. D. Salmonson; B. A. Hammel; L. J. Atherton; R. Cook; M. J. Edwards; S. H. Glenzer; Alex V. Hamza; S. P. Hatchett; Mark Herrmann; D. E. Hinkel; D. Ho; H. Huang; O. S. Jones; J. L. Kline; G. A. Kyrala; O. L. Landen; B. J. MacGowan; M. M. Marinak; D. D. Meyerhofer; J. L. Milovich; K. A. Moreno; E. I. Moses; David H. Munro; A. Nikroo; R. E. Olson; Kyle Peterson

Point design targets have been specified for the initial ignition campaign on the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. The targets contain D-T fusion fuel in an ablator of either CH with Ge doping, or Be with Cu. These shells are imploded in a U or Au hohlraum with a peak radiation temperature set between 270 and 300 eV. Considerations determining the point design include laser-plasma interactions, hydrodynamic instabilities, laser operations, and target fabrication. Simulations were used to evaluate choices, and to define requirements and specifications. Simulation techniques and their experimental validation are summarized. Simulations were used to estimate the sensitivity of target performance to uncertainties and variations in experimental conditions. A formalism is described that evaluates margin for ignition, summarized in a parameter the Ignition Threshold Factor (ITF). Uncertainty and shot-to-shot variability in ITF are evaluated, and...


Physics of Plasmas | 1998

Hot electron production and heating by hot electrons in fast ignitor research

M.H. Key; M. D. Cable; Thomas E. Cowan; K. G. Estabrook; B. A. Hammel; S. P. Hatchett; E. A. Henry; D. E. Hinkel; J. D. Kilkenny; J. A. Koch; W. L. Kruer; A. B. Langdon; Barbara F. Lasinski; R.W. Lee; B. J. MacGowan; A. J. Mackinnon; J. D. Moody; M. J. Moran; A. A. Offenberger; Deanna M. Pennington; M. D. Perry; T. J. Phillips; Thomas C. Sangster; M. Singh; M. A. Stoyer; Max Tabak; G. L. Tietbohl; M. Tsukamoto; Kenneth Bradford Wharton; S. C. Wilks

In an experimental study of the physics of fast ignition the characteristics of the hot electron source at laser intensities up to 10(to the 20th power) Wcm{sup -2} and the heating produced at depth by hot electrons have been measured. Efficient generation of hot electrons but less than the anticipated heating have been observed.


Science | 2010

Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies

S. H. Glenzer; B. J. MacGowan; P. Michel; N. B. Meezan; L. J. Suter; S. Dixit; J. L. Kline; G. A. Kyrala; D. K. Bradley; D. A. Callahan; E. L. Dewald; L. Divol; E. G. Dzenitis; M. J. Edwards; Alex V. Hamza; C. A. Haynam; D. E. Hinkel; D. H. Kalantar; J. D. Kilkenny; O. L. Landen; J. D. Lindl; S. LePape; J. D. Moody; A. Nikroo; T. Parham; M. B. Schneider; R. P. J. Town; Paul J. Wegner; K. Widmann; Pamela K. Whitman

Ignition Set to Go One aim of the National Ignition Facility is to implode a capsule containing a deuterium-tritium fuel mix and initiate a fusion reaction. With 192 intense laser beams focused into a centimeter-scale cavity, a major challenge has been to create a symmetric implosion and the necessary temperatures within the cavity for ignition to be realized (see the Perspective by Norreys). Glenzer et al. (p. 1228, published online 28 January) now show that these conditions can be met, paving the way for the next step of igniting a fuel-filled capsule. Furthermore, Li et al. (p. 1231, published online 28 January) show how charged particles can be used to characterize and measure the conditions within the imploding capsule. The high energies and temperature realized can also be used to model astrophysical and other extreme energy processes in a laboratory settings. Laser-driven temperatures and implosion symmetry are close to the requirements for inertial-fusion ignition. Indirect-drive hohlraum experiments at the National Ignition Facility have demonstrated symmetric capsule implosions at unprecedented laser drive energies of 0.7 megajoule. One hundred and ninety-two simultaneously fired laser beams heat ignition-emulate hohlraums to radiation temperatures of 3.3 million kelvin, compressing 1.8-millimeter-diameter capsules by the soft x-rays produced by the hohlraum. Self-generated plasma optics gratings on either end of the hohlraum tune the laser power distribution in the hohlraum, which produces a symmetric x-ray drive as inferred from the shape of the capsule self-emission. These experiments indicate that the conditions are suitable for compressing deuterium-tritium–filled capsules, with the goal of achieving burning fusion plasmas and energy gain in the laboratory.


Physics of Plasmas | 2011

The experimental plan for cryogenic layered target implosions on the National Ignition Facility—The inertial confinement approach to fusion

M. J. Edwards; J. D. Lindl; B. K. Spears; S. V. Weber; L. J. Atherton; D. L. Bleuel; David K. Bradley; D. A. Callahan; Charles Cerjan; D. S. Clark; G. W. Collins; J. Fair; R. J. Fortner; S. H. Glenzer; S. W. Haan; B. A. Hammel; Alex V. Hamza; S. P. Hatchett; N. Izumi; B. Jacoby; O. S. Jones; J. A. Koch; B. J. Kozioziemski; O. L. Landen; R. A. Lerche; B. J. MacGowan; A. J. Mackinnon; E. R. Mapoles; M. M. Marinak; M. J. Moran

Ignition requires precisely controlled, high convergence implosions to assemble a dense shell of deuterium-tritium (DT) fuel with ρR>∼1 g/cm2 surrounding a 10 keV hot spot with ρR ∼ 0.3 g/cm2. A working definition of ignition has been a yield of ∼1 MJ. At this yield the α-particle energy deposited in the fuel would have been ∼200 kJ, which is already ∼10 × more than the kinetic energy of a typical implosion. The National Ignition Campaign includes low yield implosions with dudded fuel layers to study and optimize the hydrodynamic assembly of the fuel in a diagnostics rich environment. The fuel is a mixture of tritium-hydrogen-deuterium (THD) with a density equivalent to DT. The fraction of D can be adjusted to control the neutron yield. Yields of ∼1014−15 14 MeV (primary) neutrons are adequate to diagnose the hot spot as well as the dense fuel properties via down scattering of the primary neutrons. X-ray imaging diagnostics can function in this low yield environment providing additional information about ...


Physics of Plasmas | 2010

Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facilitya)

P. Michel; S. H. Glenzer; L. Divol; David K. Bradley; D. A. Callahan; S. Dixit; S. Glenn; D. E. Hinkel; R. K. Kirkwood; J. L. Kline; W. L. Kruer; G. A. Kyrala; S. Le Pape; N. B. Meezan; R. P. J. Town; K. Widmann; E. A. Williams; B. J. MacGowan; J. D. Lindl; L. Suter

The Hohlraum energetics experimental campaign started in the summer of 2009 on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. These experiments showed good coupling of the laser energy into the targets [N. Meezan et al., Phys. Plasmas 17, 056304 (2010)]. They have also demonstrated controlled crossed-beam energy transfer between laser beams as an efficient and robust tool to tune the implosion symmetry of ignition capsules, as predicted by earlier calculations [P. Michel et al., Phys. Rev. Lett. 102, 025004 (2009)]. A new linear model calculating crossed-beam energy transfer between cones of beams on the NIF has been developed. The model has been applied to the subscale Hohlraum targets shot during the National Ignition Campaign in 2009. A good agreement can be found between the calculations and the experiments when the impaired propagation of the laser beams due to backscatter is accounted for.


Physics of Plasmas | 2011

Capsule implosion optimization during the indirect-drive National Ignition Campaign

O. L. Landen; John Edwards; S. W. Haan; H. F. Robey; J. L. Milovich; B. K. Spears; S. V. Weber; D. S. Clark; J. D. Lindl; B. J. MacGowan; E. I. Moses; J. Atherton; Peter A. Amendt; T. R. Boehly; David K. Bradley; David G. Braun; D. A. Callahan; Peter M. Celliers; G. W. Collins; E. L. Dewald; L. Divol; J. A. Frenje; S. H. Glenzer; Alex V. Hamza; B. A. Hammel; D. G. Hicks; Nelson M. Hoffman; N. Izumi; O. S. Jones; J. D. Kilkenny

Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analytic models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown ...


Physics of Plasmas | 1996

Laser–plasma interactions in ignition‐scale hohlraum plasmas

B. J. MacGowan; Bedros Afeyan; C. A. Back; R. L. Berger; G. Bonnaud; M. Casanova; Bruce I. Cohen; D. E. Desenne; D. F. DuBois; A. G. Dulieu; K. G. Estabrook; J. C. Fernandez; S. H. Glenzer; D. E. Hinkel; T. B. Kaiser; D. H. Kalantar; R. L. Kauffman; R. K. Kirkwood; W. L. Kruer; A. B. Langdon; Barbara F. Lasinski; D. S. Montgomery; John Moody; David H. Munro; L. V. Powers; H. A. Rose; C. Rousseaux; R. E. Turner; B. H. Wilde; S. C. Wilks

Scattering of laser light by stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) is a concern for indirect drive inertial confinement fusion (ICF). The hohlraum designs for the National Ignition Facility (NIF) raise particular concerns due to the large scale and homogeneity of the plasmas within them. Experiments at Nova have studied laser–plasma interactions within large scale length plasmas that mimic many of the characteristics of the NIF hohlraum plasmas. Filamentation and scattering of laser light by SBS and SRS have been investigated as a function of beam smoothing and plasma conditions. Narrowly collimated SRS backscatter has been observed from low density, low‐Z, plasmas, which are representative of the plasma filling most of the NIF hohlraum. SBS backscatter is found to occur in the high‐Z plasma of gold ablated from the wall. Both SBS and SRS are observed to be at acceptable levels in experiments using smoothing by spectral dispersion (SSD).


Physics of Plasmas | 1994

Tabletop X-ray Lasers

David C. Eder; Peter A. Amendt; L. B. DaSilva; Richard A. London; B. J. MacGowan; Dennis L. Matthews; B. M. Penetrante; M. D. Rosen; S. C. Wilks; T. D. Donnelly; R. W. Falcone; G. L. Strobel

Details of schemes for two tabletop size x‐ray lasers that require a high‐intensity short‐pulse driving laser are discussed. The first is based on rapid recombination following optical‐field ionization. Analytical and numerical calculations of the output properties are presented. Propagation in the confocal geometry is discussed and a solution for x‐ray lasing in Li‐like N at 247 A is described. Since the calculated gain coefficient depends strongly on the electron temperature, the methods of calculating electron heating following field ionization are discussed. Recent experiments aimed at demonstrating lasing in H‐like Li at 135 A are discussed along with modeling results. The second x‐ray laser scheme is based on the population inversion obtained during inner‐shell photoionization by hard x rays. This approach has significantly higher‐energy requirements, but lasing occurs at very short wavelengths (λ≤15 A). Experiments that are possible with existing lasers are discussed.


Physics of fluids. B, Plasma physics | 1992

Short wavelength x-ray laser research at the Lawrence Livermore National Laboratory*

B. J. MacGowan; L. B. Da Silva; David J. Fields; C. J. Keane; J. A. Koch; Richard A. London; Dennis L. Matthews; S. Maxon; S. Mrowka; Albert L. Osterheld; James H. Scofield; G. Shimkaveg; J. E. Trebes; Rosemary S. Walling

Laboratory x‐ray lasers are currently being studied by researchers worldwide. This paper reviews some of the recent work carried out at Lawrence Livermore National Laboratory. Laser action has been demonstrated at wavelengths as short as 35.6 A while saturation of the small signal gain has been observed with longer wavelength schemes. Some of the most successful schemes to date have been collisionally pumped x‐ray lasers that use the thermal electron distribution within a laser‐produced plasma to excite electrons from closed shells in neon‐ and nickel‐like ions to metastable levels in the next shell. Attempts to quantify and improve the longitudinal and transverse coherence of collisionally pumped x‐ray lasers are motivated by the desire to produce sources for specific applications. Toward this goal there is a large effort underway to enhance the power output of the Ni‐like Ta x‐ray laser at 44.83 A as a source for x‐ray imaging of live cells. Improving the efficiency of x‐ray lasers in order to produce s...


Physics of Plasmas | 2010

National Ignition Campaign Hohlraum energetics

N. B. Meezan; L. J. Atherton; D. A. Callahan; E. L. Dewald; S. Dixit; E. G. Dzenitis; M. J. Edwards; C. A. Haynam; D. E. Hinkel; O. S. Jones; O. L. Landen; Richard A. London; P. Michel; J. D. Moody; J. L. Milovich; M. B. Schneider; C. A. Thomas; R. P. J. Town; A. Warrick; S. V. Weber; K. Widmann; S. H. Glenzer; L. J. Suter; B. J. MacGowan; J. L. Kline; George A. Kyrala; A. Nikroo

The first series of experiments of the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] tested ignition Hohlraum “energetics,” a term described by four broad goals: (1) measurement of laser absorption by the Hohlraum; (2) measurement of the x-ray radiation flux (TRAD4) on the surrogate ignition capsule; (3) quantitative understanding of the laser absorption and resultant x-ray flux; and (4) determining whether initial Hohlraum performance is consistent with requirements for ignition. This paper summarizes the status of NIF Hohlraum energetics experiments. The Hohlraum targets and experimental design are described, as well as the results of the initial experiments. The data demonstrate low backscattered energy (<10%) for Hohlraums filled with helium gas. A discussion of our current understanding of NIF Hohlraum x-ray drive follows, including an overview of the computational tools, i.e., radiation-hydrodynamics codes that have been used to design the Hohlraums. The perf...

Collaboration


Dive into the B. J. MacGowan's collaboration.

Top Co-Authors

Avatar

S. H. Glenzer

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

O. L. Landen

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. A. Callahan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dennis L. Matthews

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. D. Moody

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. K. Kirkwood

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

L. J. Suter

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. H. Kalantar

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. E. Hinkel

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

L. Divol

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge