Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B Fallone is active.

Publication


Featured researches published by B Fallone.


Medical Physics | 2003

Dosimetric IMRT verification with a flat-panel EPID

B Warkentin; S Steciw; S Rathee; B Fallone

A convolution-based calibration procedure has been developed to use an amorphous silicon flat-panel electronic portal imaging device (EPID) for accurate dosimetric verification of intensity-modulated radiotherapy (IMRT) treatments. Raw EPID images were deconvolved to accurate, high-resolution 2-D distributions of primary fluence using a scatter kernel composed of two elements: a Monte Carlo generated kernel describing dose deposition in the EPID phosphor, and an empirically derived kernel describing optical photon spreading. Relative fluence profiles measured with the EPID are in very good agreement with those measured with a diamond detector, and exhibit excellent spatial resolution required for IMRT verification. For dosimetric verification, the EPID-measured primary fluences are convolved with a Monte Carlo kernel describing dose deposition in a solid water phantom, and cross-calibrated with ion chamber measurements. Dose distributions measured using the EPID agree to within 2.1% with those measured with film for open fields of 2 x 2 cm2 and 10 x 10 cm2. Predictions of the EPID phantom scattering factors (SPE) based on our scatter kernels are within 1% of the SPE measured for open field sizes of up to 16 x 16 cm2. Pretreatment verifications of step-and-shoot IMRT treatments using the EPID are in good agreement with those performed with film, with a mean percent difference of 0.2 +/- 1.0% for three IMRT treatments (24 fields).


Medical Physics | 2008

Patient dosimetry for hybrid MRI-radiotherapy systems

C. Kirkby; T. Stanescu; S Rathee; Marco Carlone; B. Murray; B Fallone

A novel geometry has been proposed for a hybrid magnetic resonance imaging (MRI)-linac system in which a 6 MV linac is mounted on the open end of a biplanar, low field (0.2 T) MRI magnet on a single gantry that is free to rotate around the patient. This geometry creates a scenario in which the magnetic field vector remains fixed with respect to the incident photon beam, but moves with respect to the patient as the gantry rotates. Other proposed geometries are characterized by a radiation source rotating about a fixed cylindrical magnet where the magnetic field vector remains fixed with respect to the patient. In this investigation we simulate the inherent dose distribution patterns within the two MRI-radiation source geometries using PENELOPE and EGSnrc Monte Carlo radiation transport codes with algorithms implemented to account for the magnetic field deflection of charged particles. Simulations are performed in phantoms and for clinically realistic situations. The novel geometry results in a net Lorentz force that remains fixed with respect to the patient (in the cranial-caudal direction) and results in a cumulative influence on dose distribution for a multiple beam treatment scenario. For a case where patient anatomy is reasonably homogeneous (brain plan), differences in dose compared to a conventional (no magnetic field) case are minimal for the novel geometry. In the case of a lung plan where the inhomogeneous patient anatomy allows for the magnetic field to have significant influence on charged particle transport, larger differences occur in a predictable manner. For a system using a fixed cylindrical geometry and higher magnetic field (1.5 T), differences from the case without a magnetic field are significantly greater.


Medical Physics | 2005

Three‐dimensional IMRT verification with a flat‐panel EPID

S Steciw; B Warkentin; S Rathee; B Fallone

A three-dimensional (3D) intensity-modulated radiotherapy (IMRT) pretreatment verification procedure has been developed based on the measurement of two-dimensional (2D) primary fluence profiles using an amorphous silicon flat-panel electronic portal imaging device (EPID). As described in our previous work, fluence profiles are extracted from EPID images by deconvolution with kernels that represent signal spread in the EPID due to radiation and optical scattering. The deconvolution kernels are derived using Monte Carlo simulations of dose deposition in the EPID and empirical fitting methods, for both 6 and 15 MV photon energies. In our new 3D verification technique, 2D fluence modulation profiles for each IMRT field in a treatment are used as input to a treatment planning system (TPS), which then generates 3D doses. Verification is accomplished by comparing this new EPID-based 3D dose distribution to the planned dose distribution calculated by the TPS. Thermoluminescent dosimeter (TLD) point dose measurements for an IMRT treatment of an anthropomorphic phantom were in good agreement with the EPID-based 3D doses; in contrast, the planned dose under-predicts the TLD measurement in a high-gradient region by approximately 16%. Similarly, large discrepancies between EPID-based and TPS doses were also evident in dose profiles of small fields incident on a water phantom. These results suggest that our 3D EPID-based method is effective in quantifying relevant uncertainties in the dose calculations of our TPS for IMRT treatments. For three clinical head and neck cancer IMRT treatment plans, our TPS was found to underestimate the mean EPID-based doses in the critical structures of the spinal cord and the parotids by approximately 4 Gy (11%-14%). According to radiobiological modeling calculations that were performed, such underestimates can potentially lead to clinically significant underpredictions of normal tissue complication rates.


Seminars in Radiation Oncology | 2014

The Rotating Biplanar Linac-Magnetic Resonance Imaging System

B Fallone

We have successfully built linac-magnetic resonance imaging (MR) systems based on a linac waveguide placed between open MR planes (perpendicular) or through the central opening of one of the planes (parallel) to improve dosimetric properties. It rotates on a gantry to irradiate at any angle. Irradiation during MR imaging and automatic 2-dimensional MR image-based target tracking and automatic beam steering to the moving target have been demonstrated with our systems. The functioning whole-body system (0.6-T MR and 6-MV linac) has been installed in an existing clinical vault without removing the walls or the ceiling and without the need of a helium exhaust vent.


Physics in Medicine and Biology | 2008

A study on the magnetic resonance imaging (MRI)-based radiation treatment planning of intracranial lesions.

T. Stanescu; Hans-Soenke Jans; Pervez N; Pavel Stavrev; B Fallone

The aim of this study is to develop a magnetic resonance imaging (MRI)-based treatment planning procedure for intracranial lesions. The method relies on (a) distortion correction of raw magnetic resonance (MR) images by using an adaptive thresholding and iterative technique, (b) autosegmentation of head structures relevant to dosimetric calculations (scalp, bone and brain) using an atlas-based software and (c) conversion of MR images into computed tomography (CT)-like images by assigning bulk CT values to organ contours and dose calculations performed in Eclipse (Philips Medical Systems). Standard CT + MRI-based and MRI-only plans were compared by means of isodose distributions, dose volume histograms and several dosimetric parameters. The plans were also ranked by using a tumor control probability (TCP)-based technique for heterogeneous irradiation, which is independent of radiobiological parameters. For our 3 T Intera MRI scanner (Philips Medical Systems), we determined that the total maximum image distortion corresponding to a typical brain study was about 4 mm. The CT + MRI and MRI-only plans were found to be in good agreement for all patients investigated. Following our clinical criteria, the TCP-based ranking tool shows no significant difference between the two types of plans. This indicates that the proposed MRI-based treatment planning procedure is suitable for the radiotherapy of intracranial lesions.


Medical Physics | 2004

Novel methods of measuring single scan dose profiles and cumulative dose in CT.

K. D. Nakonechny; B Fallone; S Rathee

Computed tomography dose index (CTDI) is a conventional indicator of the patient dose in CT studies. It is measured as the integration of the longitudinal single scan dose profile (SSDP) by using a 100-mm-long pencil ionization chamber and a single axial scan. However, the assumption that most of the SSDP is contained within the chamber length may not be valid even for thin slices. We have measured the SSDPs for several slice widths on two CT scanners using a PTW diamond detector placed in a 300 mm x 200 mm x 300 mm water-equivalent plastic phantom. One SSDP was also measured using lithium fluoride (LiF) TLDs and an IC-10 small volume ion chamber, verifying the general shape of the SSDP measured using the diamond detector. Standard cylindrical PMMA CT phantoms (140 mm length) were also used to qualitatively study the effects of phantom shape, length, and composition on the measured SSDP. The SSDPs measured with the diamond detector in the water-equivalent phantom were numerically integrated to calculate the relative accumulated dose D(L)(0)calc at the center of various scan lengths L. D(L)(0)calc reached an equilibrium value for L > 300 mm, suggesting the need for phantoms longer than standard CT dose phantoms. We have also measured the absolute accumulated dose using an IC-10 small volume ion chamber, D(L)(0)SV, at three points in the phantom cross section for several beamwidths and scan lengths. For one CT system, these measurements were made in both axial and helical scanning modes. The absolute CTDI100, measured with a 102 mm active length pencil chamber, were within 4% of D(L)(0)SV measured with the small volume ion chamber for L approximately 100 mm suggesting that nonpencil chambers can be successfully used for CT dosimetry. For nominal beam widths ranging from 3 to 20 mm and for L approximately 250 mm, D(L)(0)SV values at the center of the water-equivalent phantoms elliptic cross section were approximately 25%-30% higher than the measured CTDI100. For small beamwidths, the difference in D(L)(0)SV for L approximately 250 mm and L approximately 14 x beamwidth (CTDI14nT) reached up to 50%. Peripheral point doses at 70 mm depth along the major axis of the phantom for L approximately 250 mm were up to 22% higher than for L approximately 100 mm. The differences between CTDI100 and D(L)(0)SV for L approximately 250 mm were in good agreement with the predictions made from the numerical integration of the measured SSDPs. Due to the considerable dose measured beyond the length of standard CT phantoms, CT dosimetry for longer body scan series should be performed in longer phantoms. Measurements could be made as we have shown, using a small volume chamber translating through the beam using multiple scans.


Medical Physics | 2010

Lung dosimetry in a linac-MRI radiotherapy unit with a longitudinal magnetic field.

C. Kirkby; B. Murray; S Rathee; B Fallone

PURPOSE There is interest in developing linac-MR systems for MRI-guided radiation therapy. To date, the designs for such linac-MR devices have been restricted to a transverse geometry where the static magnetic field is oriented perpendicular to the direction of the incident photon beam. This work extends possibilities in this field by proposing and examining by Monte Carlo simulations, a probable longitudinal configuration where the magnetic field is oriented in the same direction as the photon beam. METHODS The EGSnrc Monte Carlo (MC) radiation transport codes with algorithms implemented to account for the magnetic field deflection of charged particles were used to compare dose distributions for linac-MR systems in transverse and longitudinal geometries. Specifically, the responses to a 6 MV pencil photon beam incident on water and lung slabs were investigated for 1.5 and 3.0 T magnetic fields. Further a five field lung plan was simulated in the longitudinal and transverse geometries across a range of magnetic field strengths from 0.2 through 3.0 T. RESULTS In a longitudinal geometry, the magnetic field is shown to restrict the radial spread of secondary electrons to a small degree in water, but significantly in low density tissues such as lung in contrast to the lateral shift in dose distribution seen in the transverse geometry. These effects extend to the patient case, where the longitudinal configuration demonstrated dose distributions more tightly confined to the primary photon fields, which increased dose to the planning target volume (PTV), bettered dose homogeneity within a heterogeneous (in density) PTV, and reduced the tissue interface effects associated with the transverse geometry. CONCLUSIONS Dosimetry issues observed in a transverse linac-MR geometry such as changes to the depth dose distribution and tissue interface effects were significantly reduced or eliminated in a longitudinal geometry on a representative lung plan. Further, an increase in dose to the PTV, resulting from the magnetic field confining electrons to the forward direction, shows potential for a reduction in dose to the surrounding tissues.


Medical Physics | 2013

Dose response of selected ion chambers in applied homogeneous transverse and longitudinal magnetic fields

M. Reynolds; B Fallone; S Rathee

PURPOSE The magnetic fields of an integrated MR-Linac system will alter the paths of electrons that produce ions in the ionization chambers. The dose response of selected ion chambers is evaluated in the presence of varying transverse and longitudinal magnetic fields. The investigation is useful in calibration of therapeutic x-ray beams associated with MR-Linac systems. METHODS The Monte Carlo code PENELOPE was used to model the irradiation of NE2571, and PR06C ionization chambers in the presence of a transverse and longitudinal (with respect to the photon beam) magnetic fields of varying magnitude. The long axis of each chamber was simulated both parallel and perpendicular to the incident photon beam for each magnetic field case. The dose deposited in each chamber for each case was compared to the case with zero magnetic field by means of a ratio. The PR06C chambers response was measured in the presence of a transverse magnetic field with field strengths ranging from 0.0 to 0.2 T to compare to simulated results. RESULTS The simulations and measured data show that in the presence of a transverse magnetic field there is a considerable dose response (maximum of 11% near 1.0 T in the ion chambers investigated, which depends on the magnitude of magnetic field, and relative orientation of the magnetic field, radiation beam, and ion chamber. Measurements made with the PR06C chamber verify these results in the region of measurement. In contrast, a longitudinal magnetic field produces only a slight increase in dose response (2% at 1.5 T) that rises slowly with increasing magnetic field and is seemingly independent of chamber orientation. Response trends were similar for the two ion chambers and relative orientations considered, but slight variations are present from chamber to chamber. CONCLUSIONS Care must be taken when making ion chamber measurements in a transverse magnetic field. Ion chamber responses vary not only with transverse field strength, but with chamber orientation and type, and can be considerable. Longitudinal magnetic fields influence ion chamber responses relatively little (2% at 1.5 T), and only at field strengths in excess of 1.0 T.


Medical Physics | 2007

TU‐C‐M100F‐01: Development of a Linac‐MRI System for Real‐Time ART

B Fallone; Marco Carlone; B. Murray; S Rathee; T. Stanescu; S Steciw; Keith Wachowicz; C. Kirkby

Purpose: To describe the novel design of the coupling an of MRI to a medical linac to provide real‐time tracking of the tumor and healthy tissues during irradiation by the treatment beam Method and Materials: Various embodiments are defined in our patents (Fallone, Carlone, Murray) to avoid mutual interference between the MR and the linac. Our method allows rotation of a linac with respect to the subject to allow irradiation of the subject from any angle without disturbing the magnet homogeneity. Magnetic shielding of the linac prevents disturbance from the MRI. RF signal shielding, modifications the RF‐signal triggering and pulse shaping are used to minimize linac interference of MRI RF read sequences. Various Monte Carlo calculations (EGS4 NRC and Penelope) and finite‐element analyses (Comsol) are performed in all design stages. Results: The initial design for the human system involves a bi‐planar MRI with 65 cm opening to allow rotation of the shoulders within the bore. A short 6 MV waveguide is coupled to one open end of the MR, and a beam‐stop and a projection imaging device (eg, flatpanel) is coupled to the other end. Rotation is provide by two concentric rings, and the permanent‐magnet design is preferred in the initial stage to provide stability and lack of electric wiring in the rotation process. Low fields allows very small fringe fields to minimize linac interference yet with adequate image quality of soft tissue for lungs, prostate, GBM, etc. Mutual interference issues and other issues arising externally are calculated and resolved. Conclusion: We have shown the design to be a practical, viable and realizable within a reasonable time frame. Our other presentations detail resolutions to mutual MRI‐linac interferences.


Medical Physics | 2005

Patient specific treatment verifications for helical tomotherapy treatment plans

Steven D. Thomas; M. Mackenzie; G Field; Alasdair Syme; B Fallone

We performed two-dimensional treatment verifications for ten patients planned and treated with helical tomotherapy. The treatment verification consisted of a film measurement as well as point dose measurements made with an ion chamber. The agreement between the calculated and the measured film dose distributions was evaluated with the gamma index calculated for three sets of criteria (2 mm and 2%, 4 mm and 3%, and 3 mm and 5%) as recommended in the literature. Good agreement was found between measured and calculated distributions without any need of normalization of the dose data but with dose map registration using reference marks. In this case, 69.8 +/- 17.2%, 92.6 +/- 9.0%, and 93.4 +/- 8.5% passed the 2 mm and 2%, 4 mm and 3%, and 3 mm and 5% criteria, respectively. Agreement was excellent when both normalization and manual registration of the dose maps was employed. In this case 91.2 +/- 5.6%, 99.0 +/- 1.4%, and 99.5 +/- 0.8% passed the 2 mm and 2%, 4 mm and 3%, and 3 mm and 5% criteria, respectively. The mean percent discrepancy for the point dose measurements was -0.5 +/- 1.1%, -2.4 +/- 3.7%, -1.1 +/- 7.3% for the high dose, low dose, and critical structure point, respectively. Three criteria for a satisfactory treatment verification in the high dose regions of a plan were established. For the un-normalized reference mark registered data 80% of pixels must pass the 3 mm and 5% criteria. For the normalized and manually registered data, 80% must pass the 2 mm and 2% criteria, and the point dose measurement must be within 2% of the calculated dose. All low dose region/critical structure point dose measurements were evaluated on a patient by patient basis. The criteria we recommend can be useful for the routine evaluation of treatment plans for tomotherapy systems.

Collaboration


Dive into the B Fallone's collaboration.

Top Co-Authors

Avatar

S Rathee

Cross Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S Steciw

Cross Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

B Warkentin

Cross Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J St. Aubin

Cross Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

B Burke

University of Alberta

View shared research outputs
Top Co-Authors

Avatar

J Yun

University of Alberta

View shared research outputs
Top Co-Authors

Avatar

B. Murray

Cross Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge