Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. Geiger is active.

Publication


Featured researches published by B. Geiger.


Plasma Physics and Controlled Fusion | 2011

Fast-ion D-alpha measurements at ASDEX Upgrade

B. Geiger; M. Garcia-Munoz; William W. Heidbrink; R. M. McDermott; G. Tardini; R. Dux; R. Fischer; V. Igochine

A fast-ion D-alpha (FIDA) diagnostic has been developed for the fully tungsten coated ASDEX Upgrade (AUG) tokamak using 25 toroidally viewing lines of sight and featuring a temporal resolution of 10 ms. The diagnostics toroidal geometry determines a well-defined region in velocity space which significantly overlaps with the typical fast-ion distribution in AUG plasmas. Background subtraction without beam modulation is possible because relevant parts of the FIDA spectra are free from impurity line contamination. Thus, the temporal evolution of the confined fast-ion distribution function can be monitored continuously. FIDA profiles during on- and off-axis neutral beam injection (NBI) heating are presented which show changes in the radial fast-ion distribution with the different NBI geometries. Good agreement has been obtained between measured and simulated FIDA radial profiles in MHD-quiescent plasmas using fast-ion distribution functions provided by TRANSP. In addition, a large fast-ion redistribution with a drop of about 50% in the central fast-ion population has been observed in the presence of a q = 2 sawtooth-like crash, demonstrating the capabilities of the diagnostic.


Physics of Plasmas | 2011

Measurements and modeling of Alfvén eigenmode induced fast ion transport and loss in DIII-D and ASDEX Upgrade

M. A. Van Zeeland; W.W. Heidbrink; R. K. Fisher; M. Garcia Munoz; G. J. Kramer; D. C. Pace; R. B. White; S. Aekaeslompolo; M. E. Austin; J. E. Boom; I. G. J. Classen; S. da Graça; B. Geiger; M. Gorelenkova; N.N. Gorelenkov; A.W. Hyatt; N.C. Luhmann; M. Maraschek; G. R. McKee; R.A. Moyer; C.M. Muscatello; R. Nazikian; Hae-Sim Park; S. Sharapov; W. Suttrop; G. Tardini; Benjamin Tobias; Y. B. Zhu; Diii-D

Neutral beam injection into reversed magnetic shear DIII-D and ASDEX Upgrade plasmas produces a variety of Alfvenic activity including toroidicity-induced Alfven eigenmodes and reversed shear Alfven eigenmodes (RSAEs). These modes are studied during the discharge current ramp phase when incomplete current penetration results in a high central safety factor and increased drive due to multiple higher order resonances. Scans of injected 80 keV neutral beam power on DIII-D showed a transition from classical to AE dominated fast ion transport and, as previously found, discharges with strong AE activity exhibit a deficit in neutron emission relative to classical predictions. By keeping beam power constant and delaying injection during the current ramp, AE activity was reduced or eliminated and a significant improvement in fast ion confinement observed. Similarly, experiments in ASDEX Upgrade using early 60 keV neutral beam injection drove multiple unstable RSAEs. Periods of strong RSAE activity are accompanied ...


Nuclear Fusion | 2012

Tomography of fast-ion velocity-space distributions from synthetic CTS and FIDA measurements

M. Salewski; B. Geiger; S. K. Nielsen; Henrik Bindslev; M. Garcia-Munoz; W.W. Heidbrink; Søren Bang Korsholm; F. Leipold; F. Meo; Poul Michelsen; D. Moseev; M. Stejner; G. Tardini

We compute tomographies of 2D fast-ion velocity distribution functions from synthetic collective Thomson scattering (CTS) and fast-ion Dα (FIDA) 1D measurements using a new reconstruction prescription. Contradicting conventional wisdom we demonstrate that one single 1D CTS or FIDA view suffices to compute accurate tomographies of arbitrary 2D functions under idealized conditions. Under simulated experimental conditions, single-view tomographies do not resemble the original fast-ion velocity distribution functions but nevertheless show their coarsest features. For CTS or FIDA systems with many simultaneous views on the same measurement volume, the resemblance improves with the number of available views, even if the resolution in each view is varied inversely proportional to the number of views, so that the total number of measurements in all views is the same. With a realistic four-view system, tomographies of a beam ion velocity distribution function at ASDEX Upgrade reproduce the general shape of the function and the location of the maxima at full and half injection energy of the beam ions. By applying our method to real many-view CTS or FIDA measurements, one could determine tomographies of 2D fast-ion velocity distribution functions experimentally.


Nuclear Fusion | 2011

Fast-ion transport induced by Alfvén eigenmodes in the ASDEX Upgrade tokamak

M. Garcia-Munoz; I. G. J. Classen; B. Geiger; W. W. Heidbrink; M. A. Van Zeeland; S. Äkäslompolo; R. Bilato; V. Bobkov; M. Brambilla; S. da Graca; V. Igochine; Ph. Lauber; N.C. Luhmann; M. Maraschek; F. Meo; H. Park; M. Schneller; G. Tardini

A comprehensive suite of diagnostics has allowed detailed measurements of the Alfven eigenmode (AE) spatial structure and subsequent fast-ion transport in the ASDEX Upgrade (AUG) tokamak [1]. Reversed shear Alfven eigenmodes (RSAEs) and toroidal induced Alfven eigenmodes (TAEs) have been driven unstable by fast ions from ICRH as well as NBI origin. In ICRF heated plasmas, diffusive and convective fast-ion losses induced by AEs have been characterized in fast-ion phase space. While single RSAEs and TAEs eject resonant fast ions in a convective process directly proportional to the fluctuation amplitude, δB/B, the overlapping of multiple RSAE and TAE spatial structures and wave–particle resonances leads to a large diffusive loss, scaling as (δB/B)2. In beam heated discharges, coherent fast-ion losses have been observed primarily due to TAEs. Core localized, low amplitude NBI driven RSAEs have not been observed to cause significant coherent fast-ion losses. The temporal evolution of the confined fast-ion profile in the presence of RSAEs and TAEs has been monitored with high spatial and temporal resolution. A large drop in the central fast-ion density due to many RSAEs has been observed as qmin passes through an integer. The AE radial and poloidal structures have been obtained with unprecedented details using a fast SXR as well as 1D and 2D ECE radiometers. GOURDON and HAGIS simulations have been performed to identify the orbit topology of the escaping ions and study the transport mechanisms. Both passing and trapped ions are strongly redistributed by AEs.


Nuclear Fusion | 2014

Measurement of a 2D fast-ion velocity distribution function by tomographic inversion of fast-ion D-alpha spectra

M. Salewski; B. Geiger; A. S. Jacobsen; M. Garcia-Munoz; W.W. Heidbrink; Søren Bang Korsholm; F. Leipold; Jens Madsen; D. Moseev; S. K. Nielsen; J. Juul Rasmussen; M. Stejner; G. Tardini; M. Weiland

We present the first measurement of a local fast-ion 2D velocity distribution function f(v?, v?). To this end, we heated a plasma in ASDEX Upgrade by neutral beam injection and measured spectra of fast-ion D? (FIDA) light from the plasma centre in three views simultaneously. The measured spectra agree very well with synthetic spectra calculated from a TRANSP/NUBEAM simulation. Based on the measured FIDA spectra alone, we infer f(v?, v?) by tomographic inversion. Salient features of our measurement of f(v?, v?) agree reasonably well with the simulation: the measured as well as the simulated f(v?, v?) are lopsided towards negative velocities parallel to the magnetic field, and they have similar shapes. Further, the peaks in the simulation of f(v?, v?) at full and half injection energies of the neutral beam also appear in the measurement at similar velocity-space locations. We expect that we can measure spectra in up to seven views simultaneously in the next ASDEX Upgrade campaign which would further improve measurements of f(v?, v?) by tomographic inversion.


Nuclear Fusion | 2013

Fast-ion redistribution and loss due to edge perturbations in the ASDEX Upgrade, DIII-D and KSTAR tokamaks

M. Garcia-Munoz; S. Äkäslompolo; O. Asunta; J. Boom; X. Chen; I. G. J. Classen; R. Dux; T.E. Evans; S. Fietz; R.K. Fisher; C. Fuchs; B. Geiger; W. W. Heidbrink; M. Hölzl; V. Igochine; J. Kim; Jun Young Kim; T. Kurki-Suonio; B. Kurzan; N. Lazanyi; N. Luhmann; T. Lunt; R. M. McDermott; M. Maraschek; M. Nocente; H. Park; G. I. Pokol; D. C. Pace; T.L. Rhodes; K. Shinohara

The impact of edge localized modes (ELMs) and externally applied resonant and non-resonant magnetic perturbations (MPs) on fast-ion confinement/transport have been investigated in the ASDEX Upgrade (AUG), DIII-D and KSTAR tokamaks. Two phases with respect to the ELM cycle can be clearly distinguished in ELM-induced fast-ion losses. Inter-ELM losses are characterized by a coherent modulation of the plasma density around the separatrix while intra-ELM losses appear as well-defined bursts. In high collisionality plasmas with mitigated ELMs, externally applied MPs have little effect on kinetic profiles, including fast-ions, while a strong impact on kinetic profiles is observed in low-collisionality, low q95 plasmas with resonant and non-resonant MPs. In low-collisionality H-mode plasmas, the large fast-ion filaments observed during ELMs are replaced by a loss of fast-ions with a broad-band frequency and an amplitude of up to an order of magnitude higher than the neutral beam injection prompt loss signal without MPs. A clear synergy in the overall fast-ion transport is observed between MPs and neoclassical tearing modes. Measured fast-ion losses are typically on banana orbits that explore the entire pedestal/scrape-off layer. The fast-ion response to externally applied MPs presented here may be of general interest for the community to better understand the MP field penetration and overall plasma response.


Nuclear Fusion | 2012

Gamma-ray spectroscopy measurements of confined fast ions on ASDEX upgrade

M. Nocente; M. Garcia-Munoz; G. Gorini; M. Tardocchi; A. Weller; S. Äkäslompolo; R. Bilato; V. Bobkov; C. Cazzaniga; B. Geiger; G. Grosso; A. Herrmann; V. Kiptily; M. Maraschek; R. M. McDermott; Jean-Marie Noterdaeme; Y. Podoba; G. Tardini

Evidence of ?-ray emission from fast ions in ASDEX Upgrade (AUG) is presented. The plasma scenarios developed for the experiments involve deuteron or proton acceleration. The observed ?-ray emission level induced by energetic protons is used to determine the effective tail temperature of the proton distribution function that can be compared with neutral particle analyser measurements. More generally the measured emission rate is used to assess the confinement of protons with energies <400?keV in discharges affected by toroidal Alfv?n eigenmode instabilities. The derived information on confined ions is combined with observations made with the AUG fast ion loss detector.


Nuclear Fusion | 2013

Combination of fast-ion diagnostics in velocity-space tomographies

M. Salewski; B. Geiger; S. K. Nielsen; Henrik Bindslev; M. Garcia-Munoz; W. W. Heidbrink; Søren Bang Korsholm; F. Leipold; Jens Madsen; F. Meo; Poul Michelsen; D. Moseev; M. Stejner; G. Tardini

Fast-ion D? (FIDA) and collective Thomson scattering (CTS) diagnostics provide indirect measurements of fast-ion velocity distribution functions in magnetically confined plasmas. Here we present the first prescription for velocity-space tomographic inversion of CTS and FIDA measurements that can use CTS and FIDA measurements together and that takes uncertainties in such measurements into account. Our prescription is general and could be applied to other diagnostics. We demonstrate tomographic reconstructions of an ASDEX Upgrade beam ion velocity distribution function. First, we compute synthetic measurements from two CTS views and two FIDA views using a TRANSP/NUBEAM simulation, and then we compute joint tomographic inversions in velocity-space from these. The overall shape of the 2D velocity distribution function and the location of the maxima at full and half beam injection energy are well reproduced in velocity-space tomographic inversions, if the noise level in the measurements is below 10%. Our results suggest that 2D fast-ion velocity distribution functions can be directly inferred from fast-ion measurements and their uncertainties, even if the measurements are taken with different diagnostic methods.


Plasma Physics and Controlled Fusion | 2014

On velocity-space sensitivity of fast-ion D-alpha spectroscopy

M. Salewski; B. Geiger; D. Moseev; W.W. Heidbrink; A. S. Jacobsen; S. B. Korsholm; F. Leipold; Jens Madsen; S. K. Nielsen; J. Juul Rasmussen; M. Stejner; M. Weiland

The velocity-space observation regions and sensitivities in fast-ion Dα (FIDA) spectroscopy measurements are often described by so-called weight functions. Here we derive expressions for FIDA weight functions accounting for the Doppler shift, Stark splitting, and the charge-exchange reaction and electron transition probabilities. Our approach yields an efficient way to calculate correctly scaled FIDA weight functions and implies simple analytic expressions for their boundaries that separate the triangular observable regions in (v||, v⊥)-space from the unobservable regions. These boundaries are determined by the Doppler shift and Stark splitting and could until now only be found by numeric simulation.


Plasma Physics and Controlled Fusion | 2015

Quantification of the impact of large and small-scale instabilities on the fast-ion confinement in ASDEX Upgrade

B. Geiger; M. Weiland; A. Mlynek; M. Reich; A. Bock; M. Dunne; R. Dux; E. Fable; R. Fischer; M. Garcia-Munoz; J. Hobirk; Ch. Hopf; Stefan Kragh Nielsen; T. Odstrcil; C. Rapson; D. Rittich; F. Ryter; M. Salewski; P. A. Schneider; G. Tardini; M. Willensdorfer

The confinement fast ions, generated by neutral beam injection (NBI), has been investigated at the ASDEX Upgrade tokamak. In plasmas that exhibit strong sawtooth crashes, a significant sawtooth-induced internal redistribution of mainly passing fast ions is observed, which is in very good agreement with the theoretical predictions based on the Kadomtsev model. Between the sawtooth crashes, the fishbone modes are excited which, however, do not cause measurable changes in the global fast-ion population. During experiments with on- and off-axis NBI and without strong magnetohydrodynamic (MHD) modes, the fast-ion measurements agree very well with the neo-classical predictions. This shows that the MHD-induced (large-scale), as well as a possible turbulence-induced (small-scale) fast-ion transport is negligible under these conditions. However, in discharges performed to study the off-axis NBI current drive efficiency with up to 10 MW of heating power, the fast-ion measurements agree best with the theoretical predictions that assume a weak level anomalous fast-ion transport. This is also in agreement with measurements of the internal inductance, a Motional Stark Effect diagnostic and a novel polarimetry diagnostic: the fast-ion driven current profile is clearly modified when changing the NBI injection geometry and the measurements agree best with the predictions that assume weak anomalous fast-ion diffusion.

Collaboration


Dive into the B. Geiger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Salewski

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge