Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. K. Berger is active.

Publication


Featured researches published by B. K. Berger.


Physical Review D | 2017

Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914

B. Abbott; R. Abbott; M. R. Abernathy; R. Adhikari; S. Anderson; K. Arai; M. C. Araya; J. C. Barayoga; B. Barish; B. K. Berger; G. Billingsley; J. K. Blackburn; R. Bork; A. F. Brooks; C. Cahillane; T. Callister; C. Cepeda; R. Chakraborty; T. Chalermsongsak; P. Couvares; D. C. Coyne; V. Dergachev; R. W. P. Drever; P. Ehrens; T. Etzel; S. E. Gossan; K. E. Gushwa; E. K. Gustafson; E. D. Hall; A. W. Heptonstall

In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector’s differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector’s gravitational-wave response. The gravitational-wave response model is determined by the detector’s opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 days of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10° in phase across the relevant frequency band, 20 Hz to 1 kHz.


Physical Review D | 2015

All-sky search for long-duration gravitational wave transients with LIGO

B. Abbott; R. Abbott; T. D. Abbott; M. Abernathy; F. Acernese; K. Ackley; C. Adams; T. Adams; P. Addesso; R. Adhikari; V. B. Adya; C. Affeldt; M. Agathos; K. Agatsuma; N. Aggarwal; O. D. Aguiar; A. Ain; P. Ajith; B. Allen; A. Allocca; D. Amariutei; S. Anderson; W. G. Anderson; Koji Arai; M. C. Araya; C. C. Arceneaux; J. S. Areeda; N. Arnaud; K. G. Arun; G. Ashton

We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10 - 500 seconds in a frequency band of 40 - 1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. We also report upper limits on the source rate density per year per Mpc^3 for specific signal models. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves.

Collaboration


Dive into the B. K. Berger's collaboration.

Top Co-Authors

Avatar

B. Abbott

University of Oklahoma

View shared research outputs
Top Co-Authors

Avatar

M. C. Araya

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. Abbott

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. Adhikari

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

S. Anderson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

B. Barish

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

C. Adams

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

C. C. Arceneaux

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar

C. Cahillane

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

C. Cepeda

University of Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge