Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where B. N. Prashanth Kumar is active.

Publication


Featured researches published by B. N. Prashanth Kumar.


Biomaterials | 2011

The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer

P. Venkatesan; Nagaprasad Puvvada; Rupesh Dash; B. N. Prashanth Kumar; Devanand Sarkar; Belal Azab; Amita Pathak; Subhas C. Kundu; Paul B. Fisher; Mahitosh Mandal

Celecoxib has shown potential anticancer activity against most carcinomas, especially in patients with familial adenomatous polyposis and precancerous disease of the colon. However, serious side effects of celecoxib restrict its generalized use for cancer therapy. In order to resolve these issues and develop an alternative strategy/preliminary approach, chitosan modified hydroxyapatite nanocarriers-mediated celecoxib delivery represents a viable strategy. We characterized the nanoparticle for morphology, particle size, zeta potential, crystalinity, functional group analysis, entrapment efficiency, drug release and hemocompatibility. The effects of celecoxib-loaded nanoparticles on colon cancer cell proliferation, morphology, cytoskeleton, cellular uptake and apoptosis were analysed in vitro. Further, we evaluated the antiproliferative, apoptotic and tumor inhibitory efficacy of celecoxib-loaded nanocarriers in a nude mouse human xenograft model. Nanoparticles exhibited small, narrow hydrodynamic size distributions, hemocompatibility, high entrapment efficiencies and sustained release profiles. In vitro studies showed significant antiproliferation, apoptosis and time-dependent cytoplasmic uptake of celecoxib-loaded Hap-Cht nanoparticles in HCT 15 and HT 29 colon cancer cells. Additional in vivo studies demonstrated significantly greater inhibition of tumor growth following treatment with this modified nanoparticle system. The present study indicates a promising, effective and safe means of using celecoxib, and potentially other therapeutic agents for colon cancer therapy.


PLOS ONE | 2013

Targeted Apoptotic Effects of Thymoquinone and Tamoxifen on XIAP Mediated Akt Regulation in Breast Cancer

Shashi Rajput; B. N. Prashanth Kumar; Siddik Sarkar; Subhasis Das; Belal Azab; Prasanna K. Santhekadur; Swadesh K. Das; Luni Emdad; Devanand Sarkar; Paul B. Fisher; Mahitosh Mandal

X-linked inhibitor of apoptosis protein (XIAP) is constitutively expressed endogenous inhibitor of apoptosis, exhibit its antiapoptotic effect by inactivating key caspases such as caspase-3, caspase-7 and caspase-9 and also play pivotal role in rendering cancer chemoresistance. Our studies showed the coadministration of TQ and TAM resulting in a substantial increase in breast cancer cell apoptosis and marked inhibition of cell growth both in vitro and in vivo. Anti-angiogenic and anti-invasive potential of TQ and TAM was assessed through in vitro studies. This novel combinatorial regimen leads to regulation of multiple cell signaling targets including inactivation of Akt and XIAP degradation. At molecular level, TQ and TAM synergistically lowers XIAP expression resulting in binding and activation of caspase-9 in apoptotic cascade, and interfere with cell survival through PI3-K/Akt pathway by inhibiting Akt phosphorylation. Cleaved caspase-9 further processes other intracellular death substrates such as PARP thereby shifting the balance from survival to apoptosis, indicated by rise in the sub-G1 cell population. This combination also downregulates the expression of Akt-regulated downstream effectors such as Bcl-xL, Bcl-2 and induce expression of Bax, AIF, cytochrome C and p-27. Consistent with these results, overexpression studies further confirmed the involvement of XIAP and its regulatory action on Akt phosphorylation along with procaspase-9 and PARP cleavage in TQ-TAM coadministrated induced apoptosis. The ability of TQ and TAM in inhibiting XIAP was confirmed through siRNA-XIAP cotransfection studies. This novel modality may be a promising tool in breast cancer treatment.


Science and Technology of Advanced Materials | 2012

Synthesis of biocompatible multicolor luminescent carbon dots for bioimaging applications

Nagaprasad Puvvada; B. N. Prashanth Kumar; Suraj Konar; Himani Kalita; Mahitosh Mandal; Amita Pathak

Abstract Water-soluble carbon dots (C-dots) were prepared through microwave-assisted pyrolysis of an aqueous solution of dextrin in the presence of sulfuric acid. The C-dots produced showed multicolor luminescence in the entire visible range, without adding any surface-passivating agent. X-ray diffraction and Fourier transform infrared spectroscopy studies revealed the graphitic nature of the carbon and the presence of hydrophilic groups on the surface, respectively. The formation of uniformly distributed C-dots and their luminescent properties were, respectively, revealed from transmission electron microscopy and confocal laser scanning microscopy. The biocompatible nature of C-dots was confirmed by a cytotoxicity assay on MDA-MB-468 cells and their cellular uptake was assessed through a localization study.


ACS Applied Materials & Interfaces | 2013

Photoresponsive coumarin-tethered multifunctional magnetic nanoparticles for release of anticancer drug

S. Karthik; Nagaprasad Puvvada; B. N. Prashanth Kumar; Shashi Rajput; Amita Pathak; Mahitosh Mandal; N. D. Pradeep Singh

Recently, photoresponsive nanoparticles have received significant attention because of their ability to provide spatial and temporal control over the drug release. In the present work, we report for the first time photoresponsive multifunctional magnetic nanoparticles (MNPs) fabricated using coumarin-based phototrigger and Fe/Si MNPs for controlled delivery of anticancer drug chlorambucil. Further, newly fabricated photoresponsive multifunctional MNPs were also explored for cell luminescence imaging. In vitro biological studies revealed that coumarin tethered Fe/Si MNPs of ~9 nm size efficiently delivered the anticancer drug chlorambucil into cancer cells and thereby improving the drug action to kill the cancer cells upon irradiation. Such multifunctional MNPs with strong fluorescence, good biocompatibility and efficient photocontrolled drug release ability will be of great benefit in the construction of light-activated multifunctional nano drug delivery systems.


Life Sciences | 2013

Molecular targeting of Akt by thymoquinone promotes G1 arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells

Shashi Rajput; B. N. Prashanth Kumar; Kaushik Kumar Dey; Ipsita Pal; Aditya Parekh; Mahitosh Mandal

AIM Thymoquinone (TQ), the predominant bioactive constituent of black seed oil (Nigella Sativa), has been shown to possess antineoplastic activity against multifarious tumors. However, the meticulous mechanism of TQ on Akt mediated survival pathway is still unrevealed in breast cancer. Here, we investigated TQs mechanism of action against PI3K/Akt signaling and its downstream targets by modulating proteins translational machinery, leading to apoptosis in cancer cells. MAIN METHODS MDA-MB-468 and T-47D cells were treated with TQ and evaluated for its anticancer activity through phase distribution and western blot. Modulatory effects of TQ on Akt were affirmed through kinase and drug potential studies. KEY FINDINGS Studies revealed G1 phase arrest till 24h incubation with TQ while extended exposure showed phase shift to subG1 indicating apoptosis, supported by suppression of cyclin D1, cyclin E and cyclin dependent kinase inhibitor p27 expression. Immunoblot and membrane potential studies revealed mitochondrial impairment behind apoptotic process with upregulation of Bax, cytoplasmic cytochrome c and procaspase-3, PARP cleavage along with Bcl-2, Bcl-xL and survivin downregulation. Moreover, we construed the rationale behind mitochondrial dysfunction by examining the phosphorylation status of PDK1, PTEN, Akt, c-raf, GSK-3β and Bad in TQ treated cells, thus ratifying the involvement of Akt in apoptosis. Further, the consequential effect of Akt inhibition by TQ is proven by translational repression through deregulated phosphorylation of 4E-BP1, eIF4E, S6R and p70S6K. SIGNIFICANCE Our observations for the first time may provide a new insight for the development of novel therapies for Akt overexpressed breast cancer by TQ.


BMC Cancer | 2013

Celecoxib alleviates tamoxifen-instigated angiogenic effects by ROS-dependent VEGF/VEGFR2 autocrine signaling

B. N. Prashanth Kumar; Shashi Rajput; Kaushik Kumar Dey; Aditya Parekh; Subhasis Das; Abhijit Mazumdar; Mahitosh Mandal

BackgroundTamoxifen (TAM) is widely used in the chemotherapy of breast cancer and as a preventive agent against recurrence after surgery. However, extended TAM administration for breast cancer induces increased VEGF levels in patients, promoting new blood vessel formation and thereby limiting its efficacy. Celecoxib (CXB), a selective COX-2 inhibitor, suppresses VEGF gene expression by targeting the VEGF promoter responsible for its inhibitory effect. For this study, we had selected CXB as non-steroidal anti-inflammatory drug in combination with TAM for suppressing VEGF expression and simultaneously reducing doses of both the drugs.MethodsThe effects of CXB combined with TAM were examined in two human breast cancer cell lines in culture, MCF7 and MDA-MB-231. Assays of proliferation, apoptosis, angiogenesis, metastasis, cell cycle distribution, and receptor signaling were performed.ResultsHere, we elucidated how the combination of TAM and CXB at nontoxic doses exerts anti-angiogenic effects by specifically targeting VEGF/VEGFR2 autocrine signaling through ROS generation. At the molecular level, TAM-CXB suppresses VHL-mediated HIF-1α activation, responsible for expression of COX-2, MMP-2 and VEGF. Besides low VEGF levels, TAM-CXB also suppresses VEGFR2 expression, confirmed through quantifying secreted VEGF levels, luciferase and RT-PCR studies. Interestingly, we observed that TAM-CXB was effective in blocking VEGFR2 promoter induced expression and further 2 fold decrease in VEGF levels was observed in combination than TAM alone in both cell lines. Secondly, TAM-CXB regulated VEGFR2 inhibits Src expression, responsible for tumor progression and metastasis. FACS and in vivo enzymatic studies showed significant increase in the reactive oxygen species upon TAM-CXB treatment.ConclusionsTaken together, our experimental results indicate that this additive combination shows promising outcome in anti-metastatic and apoptotic studies. In a line, our preclinical studies evidenced that this additive combination of TAM and CXB is a potential drug candidate for treatment of breast tumors expressing high levels of VEGF and VEGFR2. This ingenious combination might be a better tailored clinical regimen than TAM alone for breast cancer treatment.


Scientific Reports | 2015

Marine lipopeptide Iturin A inhibits Akt mediated GSK3β and FoxO3a signaling and triggers apoptosis in breast cancer

Goutam Dey; Rashmi Bharti; Gunaseelan Dhanarajan; Subhasis Das; Kaushik Kumar Dey; B. N. Prashanth Kumar; Ramkrishna Sen; Mahitosh Mandal

Akt kinase is a critical component of the PI3K/Akt signaling pathway, which is frequently over expressed in human cancers including breast. Therapeutic regimens for inhibiting breast cancer with aberrant Akt activity are essential. Here, we evaluated antitumor effect of a marine bacteria derived lipopeptide ‘Iturin A’ on human breast cancer in vitro and in vivo through disrupting Akt pathway. Proliferation of MDA-MB-231 and MCF-7 breast cancer cells were significantly inhibited by Iturin A and it induced apoptosis as confirmed by increased Sub G1 populations, DNA fragmentation, morphological changes and western blot analysis. Furthermore, Iturin A inhibited EGF induced Akt phosphorylation (Ser473 and Thr308) and its downstream targets GSK3β and FoxO3a. Iturin A inactivated MAPK as well as Akt kinase leading to the translocation of FoxO3a to the nucleus. Gene silencing of Akt in MDA-MB-231 and MCF-7 cells reduced the sensitivity of cancer cells to Iturin A. Interestingly, overexpression of Akt with Akt plasmid in cancer cells caused highly susceptible to induce apoptosis by Iturin A treatment. In a xenograft model, Iturin A inhibited tumor growth with reduced expressions of Ki-67, CD-31, P-Akt, P-GSK3β, P-FoxO3a and P-MAPK. Collectively, these findings imply that Iturin A has potential anticancer effect on breast cancer.


Scientific Reports | 2015

Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression

Nagaprasad Puvvada; Shashi Rajput; B. N. Prashanth Kumar; Siddik Sarkar; Suraj Konar; Keith R. Brunt; Raj R. Rao; Abhijit Mazumdar; Swadesh K. Das; Ranadhir Basu; Paul B. Fisher; Mahitosh Mandal; Amita Pathak

Low pH in the tumor micromilieu is a recognized pathological feature of cancer. This attribute of cancerous cells has been targeted herein for the controlled release of chemotherapeutics at the tumour site, while sparing healthy tissues. To this end, pH-sensitive, hollow ZnO-nanocarriers loaded with paclitaxel were synthesized and their efficacy studied in breast cancer in vitro and in vivo. The nanocarriers were surface functionalized with folate using click-chemistry to improve targeted uptake by the malignant cells that over-express folate-receptors. The nanocarriers released ~75% of the paclitaxel payload within six hours in acidic pH, which was accompanied by switching of fluorescence from blue to green and a 10-fold increase in the fluorescence intensity. The fluorescence-switching phenomenon is due to structural collapse of the nanocarriers in the endolysosome. Energy dispersion X-ray mapping and whole animal fluorescent imaging studies were carried out to show that combined pH and folate-receptor targeting reduces off-target accumulation of the nanocarriers. Further, a dual cell-specific and pH-sensitive nanocarrier greatly improved the efficacy of paclitaxel to regress subcutaneous tumors in vivo. These nanocarriers could improve chemotherapy tolerance and increase anti-tumor efficacy, while also providing a novel diagnostic read-out through fluorescent switching that is proportional to drug release in malignant tissues.


Journal of Cellular Physiology | 2015

Thymoquinone restores radiation-induced TGF-β expression and abrogates EMT in chemoradiotherapy of breast cancer cells

Shashi Rajput; B. N. Prashanth Kumar; Payel Banik; Sheetal Parida; Mahitosh Mandal

Radiotherapy remains a prime approach to adjuvant therapies in patients with early and advanced breast cancer. In spite of therapeutic success, metastatic progression in patients undergoing therapy, limits its application. However, effective therapeutic strategies to understand the cellular and molecular machinery in inhibiting radiation‐induced metastatic progression, which is poorly understood so far, need to be strengthened. Ionizing radiation was known to prompt cancer cells metastatic ability by eliciting Transforming Growth Factor‐beta (TGF‐β), a key regulator in epithelial–mesenchymal transdifferentiation and radio‐resistance. In this viewpoint, we employed thymoquinone as a radiosensitizer to investigate its migration and invasion reversal abilities in irradiated breast cancer cell lines by assessing their respective attributes. The role of metastasis regulatory molecules like TGF‐β, E‐cadherin, and integrin αV and its downstream molecules were determined using RT‐PCR, western blotting, immunofluorescence, and extracellular TGF‐β levels affirmed through ELISA assays. These studies affirmed the TGF‐β restoring ability of thymoquinone in radiation‐driven migration and invasion. Also, results demonstrated that the epithelial markers E‐cadherin and cytokeratin 19 were downregulated whereas mesenchymal markers like integrin αV, MMP9, and MMP2 were upregulated by irradiation treatment; however thymoquinone pre‐sensitization has reverted the expression of these proteins back to control proteins expression. Here, paclitaxel was chosen as an apoptosis inducer in TGF‐β restored cells and confirmed its cytotoxic effects in radiation alone and thymoquinone sensitized irradiated cells. We conclude that this therapeutic modality is effective in preventing radiation‐induced epithelial–mesenchymal transdifferentiation and concomitant induction of apoptosis in breast cancer. J. Cell. Physiol. 230: 620–629, 2015.


Journal of Materials Chemistry B | 2015

A targeted, image-guided and dually locked photoresponsive drug delivery system

S. Karthik; B. N. Prashanth Kumar; Moumita Gangopadhyay; Mahitosh Mandal; N. D. Pradeep Singh

We have developed a new targeted image-guided photoresponsive drug delivery system (DDS) based on a dual locking strategy. Excitation of the DDS by fluorescent light results in the first unlocking and activation of the drug, and allows real-time monitoring of the prodrug. Extended irradiation results in a second unlocking, giving drug release within cancer cells.

Collaboration


Dive into the B. N. Prashanth Kumar's collaboration.

Top Co-Authors

Avatar

Mahitosh Mandal

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Shashi Rajput

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Amita Pathak

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Paul B. Fisher

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Nagaprasad Puvvada

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Rashmi Bharti

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Sheetal Parida

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Goutam Dey

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Ipsita Pal

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Kaushik Kumar Dey

Indian Institute of Technology Kharagpur

View shared research outputs
Researchain Logo
Decentralizing Knowledge