Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shashi Rajput is active.

Publication


Featured researches published by Shashi Rajput.


PLOS ONE | 2013

Targeted Apoptotic Effects of Thymoquinone and Tamoxifen on XIAP Mediated Akt Regulation in Breast Cancer

Shashi Rajput; B. N. Prashanth Kumar; Siddik Sarkar; Subhasis Das; Belal Azab; Prasanna K. Santhekadur; Swadesh K. Das; Luni Emdad; Devanand Sarkar; Paul B. Fisher; Mahitosh Mandal

X-linked inhibitor of apoptosis protein (XIAP) is constitutively expressed endogenous inhibitor of apoptosis, exhibit its antiapoptotic effect by inactivating key caspases such as caspase-3, caspase-7 and caspase-9 and also play pivotal role in rendering cancer chemoresistance. Our studies showed the coadministration of TQ and TAM resulting in a substantial increase in breast cancer cell apoptosis and marked inhibition of cell growth both in vitro and in vivo. Anti-angiogenic and anti-invasive potential of TQ and TAM was assessed through in vitro studies. This novel combinatorial regimen leads to regulation of multiple cell signaling targets including inactivation of Akt and XIAP degradation. At molecular level, TQ and TAM synergistically lowers XIAP expression resulting in binding and activation of caspase-9 in apoptotic cascade, and interfere with cell survival through PI3-K/Akt pathway by inhibiting Akt phosphorylation. Cleaved caspase-9 further processes other intracellular death substrates such as PARP thereby shifting the balance from survival to apoptosis, indicated by rise in the sub-G1 cell population. This combination also downregulates the expression of Akt-regulated downstream effectors such as Bcl-xL, Bcl-2 and induce expression of Bax, AIF, cytochrome C and p-27. Consistent with these results, overexpression studies further confirmed the involvement of XIAP and its regulatory action on Akt phosphorylation along with procaspase-9 and PARP cleavage in TQ-TAM coadministrated induced apoptosis. The ability of TQ and TAM in inhibiting XIAP was confirmed through siRNA-XIAP cotransfection studies. This novel modality may be a promising tool in breast cancer treatment.


European Journal of Cancer Prevention | 2012

Antitumor promoting potential of selected phytochemicals derived from spices: a review.

Shashi Rajput; Mahitosh Mandal

Carcinogenesis is a multistep process exhibiting deregulation in multiple cellular signaling pathways. Therefore, specific agent based treatments that target only one pathway usually fail in cancer therapy. The combination treatments using chemotherapeutic agents with distinct molecular mechanisms are considered more promising for higher efficacy; however, using multiple agents contributes to added toxicity. However, the in-vitro and in-vivo studies in the last few decades have demonstrated that some phytochemicals derived from ‘natural products’ such as fruits, vegetables and certain spices, referred to as chemopreventive agents, including capsaicin, trans-anethole, thymoquinone, diosgenin, allicin, can not only reduce the risk of acquiring specific cancer but also have been shown to suppress cancer cell proliferation, inhibit growth factor signaling pathways, induce apoptosis, inhibit nuclear factor-&kgr;B, AP-1, Akt, MAPK, Wnt, Notch, p53, AR, ER, and JAK-STAT, etc., activation pathways, inhibit angiogenesis, suppress the expression of antiapoptotic proteins, and inhibit cyclooxygenase-2. This study describes the above active components of some of the major spices, their mechanisms of action and their potential in prevention of various cancers.


ACS Applied Materials & Interfaces | 2013

Photoresponsive coumarin-tethered multifunctional magnetic nanoparticles for release of anticancer drug

S. Karthik; Nagaprasad Puvvada; B. N. Prashanth Kumar; Shashi Rajput; Amita Pathak; Mahitosh Mandal; N. D. Pradeep Singh

Recently, photoresponsive nanoparticles have received significant attention because of their ability to provide spatial and temporal control over the drug release. In the present work, we report for the first time photoresponsive multifunctional magnetic nanoparticles (MNPs) fabricated using coumarin-based phototrigger and Fe/Si MNPs for controlled delivery of anticancer drug chlorambucil. Further, newly fabricated photoresponsive multifunctional MNPs were also explored for cell luminescence imaging. In vitro biological studies revealed that coumarin tethered Fe/Si MNPs of ~9 nm size efficiently delivered the anticancer drug chlorambucil into cancer cells and thereby improving the drug action to kill the cancer cells upon irradiation. Such multifunctional MNPs with strong fluorescence, good biocompatibility and efficient photocontrolled drug release ability will be of great benefit in the construction of light-activated multifunctional nano drug delivery systems.


Life Sciences | 2013

Molecular targeting of Akt by thymoquinone promotes G1 arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells

Shashi Rajput; B. N. Prashanth Kumar; Kaushik Kumar Dey; Ipsita Pal; Aditya Parekh; Mahitosh Mandal

AIM Thymoquinone (TQ), the predominant bioactive constituent of black seed oil (Nigella Sativa), has been shown to possess antineoplastic activity against multifarious tumors. However, the meticulous mechanism of TQ on Akt mediated survival pathway is still unrevealed in breast cancer. Here, we investigated TQs mechanism of action against PI3K/Akt signaling and its downstream targets by modulating proteins translational machinery, leading to apoptosis in cancer cells. MAIN METHODS MDA-MB-468 and T-47D cells were treated with TQ and evaluated for its anticancer activity through phase distribution and western blot. Modulatory effects of TQ on Akt were affirmed through kinase and drug potential studies. KEY FINDINGS Studies revealed G1 phase arrest till 24h incubation with TQ while extended exposure showed phase shift to subG1 indicating apoptosis, supported by suppression of cyclin D1, cyclin E and cyclin dependent kinase inhibitor p27 expression. Immunoblot and membrane potential studies revealed mitochondrial impairment behind apoptotic process with upregulation of Bax, cytoplasmic cytochrome c and procaspase-3, PARP cleavage along with Bcl-2, Bcl-xL and survivin downregulation. Moreover, we construed the rationale behind mitochondrial dysfunction by examining the phosphorylation status of PDK1, PTEN, Akt, c-raf, GSK-3β and Bad in TQ treated cells, thus ratifying the involvement of Akt in apoptosis. Further, the consequential effect of Akt inhibition by TQ is proven by translational repression through deregulated phosphorylation of 4E-BP1, eIF4E, S6R and p70S6K. SIGNIFICANCE Our observations for the first time may provide a new insight for the development of novel therapies for Akt overexpressed breast cancer by TQ.


BMC Cancer | 2013

Celecoxib alleviates tamoxifen-instigated angiogenic effects by ROS-dependent VEGF/VEGFR2 autocrine signaling

B. N. Prashanth Kumar; Shashi Rajput; Kaushik Kumar Dey; Aditya Parekh; Subhasis Das; Abhijit Mazumdar; Mahitosh Mandal

BackgroundTamoxifen (TAM) is widely used in the chemotherapy of breast cancer and as a preventive agent against recurrence after surgery. However, extended TAM administration for breast cancer induces increased VEGF levels in patients, promoting new blood vessel formation and thereby limiting its efficacy. Celecoxib (CXB), a selective COX-2 inhibitor, suppresses VEGF gene expression by targeting the VEGF promoter responsible for its inhibitory effect. For this study, we had selected CXB as non-steroidal anti-inflammatory drug in combination with TAM for suppressing VEGF expression and simultaneously reducing doses of both the drugs.MethodsThe effects of CXB combined with TAM were examined in two human breast cancer cell lines in culture, MCF7 and MDA-MB-231. Assays of proliferation, apoptosis, angiogenesis, metastasis, cell cycle distribution, and receptor signaling were performed.ResultsHere, we elucidated how the combination of TAM and CXB at nontoxic doses exerts anti-angiogenic effects by specifically targeting VEGF/VEGFR2 autocrine signaling through ROS generation. At the molecular level, TAM-CXB suppresses VHL-mediated HIF-1α activation, responsible for expression of COX-2, MMP-2 and VEGF. Besides low VEGF levels, TAM-CXB also suppresses VEGFR2 expression, confirmed through quantifying secreted VEGF levels, luciferase and RT-PCR studies. Interestingly, we observed that TAM-CXB was effective in blocking VEGFR2 promoter induced expression and further 2 fold decrease in VEGF levels was observed in combination than TAM alone in both cell lines. Secondly, TAM-CXB regulated VEGFR2 inhibits Src expression, responsible for tumor progression and metastasis. FACS and in vivo enzymatic studies showed significant increase in the reactive oxygen species upon TAM-CXB treatment.ConclusionsTaken together, our experimental results indicate that this additive combination shows promising outcome in anti-metastatic and apoptotic studies. In a line, our preclinical studies evidenced that this additive combination of TAM and CXB is a potential drug candidate for treatment of breast tumors expressing high levels of VEGF and VEGFR2. This ingenious combination might be a better tailored clinical regimen than TAM alone for breast cancer treatment.


Scientific Reports | 2015

Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression

Nagaprasad Puvvada; Shashi Rajput; B. N. Prashanth Kumar; Siddik Sarkar; Suraj Konar; Keith R. Brunt; Raj R. Rao; Abhijit Mazumdar; Swadesh K. Das; Ranadhir Basu; Paul B. Fisher; Mahitosh Mandal; Amita Pathak

Low pH in the tumor micromilieu is a recognized pathological feature of cancer. This attribute of cancerous cells has been targeted herein for the controlled release of chemotherapeutics at the tumour site, while sparing healthy tissues. To this end, pH-sensitive, hollow ZnO-nanocarriers loaded with paclitaxel were synthesized and their efficacy studied in breast cancer in vitro and in vivo. The nanocarriers were surface functionalized with folate using click-chemistry to improve targeted uptake by the malignant cells that over-express folate-receptors. The nanocarriers released ~75% of the paclitaxel payload within six hours in acidic pH, which was accompanied by switching of fluorescence from blue to green and a 10-fold increase in the fluorescence intensity. The fluorescence-switching phenomenon is due to structural collapse of the nanocarriers in the endolysosome. Energy dispersion X-ray mapping and whole animal fluorescent imaging studies were carried out to show that combined pH and folate-receptor targeting reduces off-target accumulation of the nanocarriers. Further, a dual cell-specific and pH-sensitive nanocarrier greatly improved the efficacy of paclitaxel to regress subcutaneous tumors in vivo. These nanocarriers could improve chemotherapy tolerance and increase anti-tumor efficacy, while also providing a novel diagnostic read-out through fluorescent switching that is proportional to drug release in malignant tissues.


Journal of Cellular Physiology | 2015

Thymoquinone restores radiation-induced TGF-β expression and abrogates EMT in chemoradiotherapy of breast cancer cells

Shashi Rajput; B. N. Prashanth Kumar; Payel Banik; Sheetal Parida; Mahitosh Mandal

Radiotherapy remains a prime approach to adjuvant therapies in patients with early and advanced breast cancer. In spite of therapeutic success, metastatic progression in patients undergoing therapy, limits its application. However, effective therapeutic strategies to understand the cellular and molecular machinery in inhibiting radiation‐induced metastatic progression, which is poorly understood so far, need to be strengthened. Ionizing radiation was known to prompt cancer cells metastatic ability by eliciting Transforming Growth Factor‐beta (TGF‐β), a key regulator in epithelial–mesenchymal transdifferentiation and radio‐resistance. In this viewpoint, we employed thymoquinone as a radiosensitizer to investigate its migration and invasion reversal abilities in irradiated breast cancer cell lines by assessing their respective attributes. The role of metastasis regulatory molecules like TGF‐β, E‐cadherin, and integrin αV and its downstream molecules were determined using RT‐PCR, western blotting, immunofluorescence, and extracellular TGF‐β levels affirmed through ELISA assays. These studies affirmed the TGF‐β restoring ability of thymoquinone in radiation‐driven migration and invasion. Also, results demonstrated that the epithelial markers E‐cadherin and cytokeratin 19 were downregulated whereas mesenchymal markers like integrin αV, MMP9, and MMP2 were upregulated by irradiation treatment; however thymoquinone pre‐sensitization has reverted the expression of these proteins back to control proteins expression. Here, paclitaxel was chosen as an apoptosis inducer in TGF‐β restored cells and confirmed its cytotoxic effects in radiation alone and thymoquinone sensitized irradiated cells. We conclude that this therapeutic modality is effective in preventing radiation‐induced epithelial–mesenchymal transdifferentiation and concomitant induction of apoptosis in breast cancer. J. Cell. Physiol. 230: 620–629, 2015.


Biosensors and Bioelectronics | 2014

Frequency dependent impedimetric cytotoxic evaluation of anticancer drug on breast cancer cell

Rangadhar Pradhan; Shashi Rajput; Mahitosh Mandal; Analava Mitra; Soumen Das

The present work reports the impedance characteristics of MCF-7 cell lines treated with anticancer drug ZD6474 to evaluate the cytotoxic effect on cellular electrical behaviour using miniature impedance sensors. Four types of impedance sensing devices with different electrode geometries are fabricated by microfabrication technology. The frequency response characteristics of drug treated cells are studied to evaluate cytotoxic effect of ZD6474 and also to assess the frequency dependent sensitivity variation with electrode area. A significant variation in magnitude of measured impedance data is obtained for drug treated samples above 10 µM dose indicating prominent effect of ZD6474 which results in suppression of cell proliferation and induction of apoptosis process. The results obtained by impedimetric method are correlated well with conventional in vitro assays such as flow cytometry, cell viability assays and microscopic imaging. Finally an empirical relation between cell impedance, electrode area and drug dose is established from impedance data which exhibits a negative correlation between drug doses and impedance of cancer cells.


Oncogene | 2016

Diacerein-mediated inhibition of IL-6/IL-6R signaling induces apoptotic effects on breast cancer

Rashmi Bharti; Goutam Dey; Probir Kumar Ojha; Shashi Rajput; Saravana Kumar Jaganathan; Ramkrishna Sen; Mahitosh Mandal

Interleukin-6 (IL-6) signaling network has been implicated in oncogenic transformations making it attractive target for the discovery of novel cancer therapeutics. In this study, potent antiproliferative and apoptotic effect of diacerein were observed against breast cancer. In vitro apoptosis was induced by this drug in breast cancer cells as verified by increased sub-G1 population, LIVE/DEAD assay, cell cytotoxicity and presence of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, as well as downregulation of antiapoptotic proteins Bcl-2 and Bcl-xL and upregulation of apoptotic protein Bax. In addition, apoptosis induction was found to be caspase dependent. Further molecular investigations indicated that diacerein instigated apoptosis was associated with inhibition of IL-6/IL-6R autocrine signaling axis. Suppression of STAT3, MAPK and Akt pathways were also observed as a consequence of diacerein-mediated upstream inhibition of IL-6/IL-6R. Fluorescence study and western blot analysis revealed cytosolic accumulation of STAT3 in diacerein-treated cells. The docking study showed diacerein/IL-6R interaction that was further validated by competitive binding assay and isothermal titration calorimetry. Most interestingly, it was found that diacerein considerably suppressed tumor growth in MDA-MB-231 xenograft model. The in vivo antitumor effect was correlated with decreased proliferation (Ki-67), increased apoptosis (TUNEL) and inhibition of IL-6/IL-6R-mediated STAT3, MAPK and Akt pathway in tumor remnants. Taken together, diacerein offered a novel blueprint for cancer therapy by hampering IL-6/IL-6R/STAT3/MAPK/Akt network.


Molecular Pharmaceutics | 2015

Overcoming Akt Induced Therapeutic Resistance in Breast Cancer through siRNA and Thymoquinone Encapsulated Multilamellar Gold Niosomes.

Shashi Rajput; Nagaprasad Puvvada; B. N. Prashanth Kumar; Siddik Sarkar; Suraj Konar; Rashmi Bharti; Goutam Dey; Abhijit Mazumdar; Amita Pathak; Paul B. Fisher; Mahitosh Mandal

Akt overexpression in cancer causes resistance to traditional chemotherapeutics. Silencing Akt through siRNA provides new therapeutic options; however, poor in vivo siRNA pharmacokinetics impede translation. We demonstrate that acidic milieu-sensitive multilamellar gold niosomes (Nio-Au) permit targeted delivery of both Akt-siRNA and thymoquinone (TQ) in tamoxifen-resistant and Akt-overexpressing MCF7 breast cancer cells. Octadecylamine groups of functionalized gold nanoparticles impart cationic attribute to niosomes, stabilized through polyethylene glycol. TQs aqueous insolubility renders its encapsulation within hydrophobic core, and negatively charged siRNA binds in hydrophilic region of cationic niosomes. These niosomes were exploited to effectively knockdown Akt, thereby sensitizing cells to TQ. Immunoblot studies revealed enhanced apoptosis by inducing p53 and inhibiting MDM2 expression, which was consistent with in vivo xenograft studies. This innovative strategy, using Nio-Au to simultaneously deliver siRNA (devoid of any chemical modification) and therapeutic drug, provides an efficacious approach for treating therapy-resistant cancers with significant translational potential.

Collaboration


Dive into the Shashi Rajput's collaboration.

Top Co-Authors

Avatar

Mahitosh Mandal

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

B. N. Prashanth Kumar

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Siddik Sarkar

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Amita Pathak

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Rashmi Bharti

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Paul B. Fisher

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Aditya Parekh

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Sheetal Parida

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Goutam Dey

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Ipsita Pal

Indian Institute of Technology Kharagpur

View shared research outputs
Researchain Logo
Decentralizing Knowledge