Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Goutam Dey is active.

Publication


Featured researches published by Goutam Dey.


Cancer Letters | 2016

Cancer development, chemoresistance, epithelial to mesenchymal transition and stem cells: A snapshot of IL-6 mediated involvement

Rashmi Bharti; Goutam Dey; Mahitosh Mandal

Interleukin-6 (IL-6) is a cytokine present in tumor microenvironment. Elevated level of IL-6 is associated with cancer cell proliferation, angiogenesis and metastasis through fueling STAT3, MAPK and Akt signaling. It promotes epithelial to mesenchymal transition (EMT) through altered expression of N-cadherin, vimentin, snail, twist and E-cadherin leading to cancer metastasis. IL-6 boosts mammosphere formation, self-renewal of stem cells, stemness properties of cancer cells and recruitment of mesenchymal stem cells. IL-6 is also a contributing factor for multidrug resistance in cancer due to gp130/MAPK/STAT3 mediated activation of transcription factors C/EBPβ/δ, overexpression of p-glycoprotein, EMT transition and expansion of stem cells. The in-depth investigation of IL-6 mediated cellular effects and its signaling pathway can provide the new window for future research and clinical development of IL-6 targeted therapy in cancer. Thus, an overview is delivered in this review deciphering the emerging aspect of the predominant influence of IL-6 in malignant transformation, EMT, cancer-associated stem cells and chemoresistance.


PLOS ONE | 2012

Antineoplastic and Apoptotic Potential of Traditional Medicines Thymoquinone and Diosgenin in Squamous Cell Carcinoma

Subhasis Das; Kaushik Kumar Dey; Goutam Dey; Ipsita Pal; Abhijit Majumder; Sujata MaitiChoudhury; Subhas C. Kundu; Mahitosh Mandal

Thymoquinone (TQ) and diosgenin (DG), the active ingredients obtained from black cumin (Nigella sativa) and fenugreek (Trigonella foenum graecum), respectively, exert potent bioactivity, including anticancer effects. This study investigated the antineoplastic activity of these agents against squamous cell carcinoma in vitro and sarcoma 180–induced tumors in vivo. TQ and DG inhibited cell proliferation and induced cytotoxicity in A431 and Hep2 cells. These agents induced apoptosis by increasing the sub-G1 population, LIVE/DEAD cytotoxicity, chromatin condensation, DNA laddering and TUNEL-positive cells significantly (P<0.05). Increased Bax/Bcl-2 ratio, activation of caspases and cleavage of poly ADP ribose polymerase were observed in treated cells. These drugs inhibited Akt and JNK phosphorylations, thus inhibiting cell proliferation while inducing apoptosis. In combination, TQ and DG had synergistic effects, resulting in cell viability as low as 10%. In a mouse xenograft model, a combination of TQ and DG significantly (P<0.05) reduced tumor volume, mass and increased apoptosis. TQ and DG, alone and in combination, inhibit cell proliferation and induce apoptosis in squamous cell carcinoma. The combination of TQ and DG is a potential antineoplastic therapy in this common skin cancer.


International Journal of Pharmaceutics | 2014

Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform

Hira Choudhury; Bapi Gorain; Sanmoy Karmakar; Easha Biswas; Goutam Dey; Rajib Barik; Mahitosh Mandal; Tapan Kumar Pal

Paclitaxel, a potential anticancer agent against solid tumors has been restricted from its oral use due to poor water solubility as well as Pgp efflux property. The present study was aimed to improve the oral bioavailability of paclitaxel through development of (o/w) nanoemulsion consisting of Capryol 90 as internal phase with Tween 20 as emulsifier with water as an external phase. Formulations were selected from the nanoemulsion region of pseudo-ternary phase diagrams, formulated by aqueous titration method. The developed nanoemulsion has been characterized by its thermodynamic stability, morphology, droplet size, zeta potential, viscosity where in vitro release was evaluated through dialysis. Paclitaxel nanoemulsion exhibited thermodynamical stability with low viscosity, nano-sized oil droplets in water with low poly-dispersity index. The shelf life of the paclitaxel nanoemulsion was found to be approximately 2.38 years. Increased permeability through the Caco-2 cell monolayer and decreased efflux is great advantageous for nanoemulsion formulation. The effects of paclitaxel nanoemulsion on breast cancer cell proliferation, morphology and DNA fragmentation were analyzed in vitro which showed significant anti-proliferation and decreased IC50 values in nanoemulsion group which may be due to enhanced uptake of paclitaxel through the oil core. Moreover, the absolute oral bioavailability and sustained release profile of the paclitaxel nanoemulsion evaluated in mouse model was found to improve up to 55.9%. The concentration of paclitaxel in mice plasma was determined by our validated LC-MS/MS method. By reviewing the significant outcome of the present investigation based on stability study, Caco-2 permeability, cell proliferative assay and pharmacokinetic profile it may be concluded that the oral nanoemulsion has got encouraging advantages over the presently available formulations of this injectable chemotherapeutic drug.


Scientific Reports | 2015

Marine lipopeptide Iturin A inhibits Akt mediated GSK3β and FoxO3a signaling and triggers apoptosis in breast cancer

Goutam Dey; Rashmi Bharti; Gunaseelan Dhanarajan; Subhasis Das; Kaushik Kumar Dey; B. N. Prashanth Kumar; Ramkrishna Sen; Mahitosh Mandal

Akt kinase is a critical component of the PI3K/Akt signaling pathway, which is frequently over expressed in human cancers including breast. Therapeutic regimens for inhibiting breast cancer with aberrant Akt activity are essential. Here, we evaluated antitumor effect of a marine bacteria derived lipopeptide ‘Iturin A’ on human breast cancer in vitro and in vivo through disrupting Akt pathway. Proliferation of MDA-MB-231 and MCF-7 breast cancer cells were significantly inhibited by Iturin A and it induced apoptosis as confirmed by increased Sub G1 populations, DNA fragmentation, morphological changes and western blot analysis. Furthermore, Iturin A inhibited EGF induced Akt phosphorylation (Ser473 and Thr308) and its downstream targets GSK3β and FoxO3a. Iturin A inactivated MAPK as well as Akt kinase leading to the translocation of FoxO3a to the nucleus. Gene silencing of Akt in MDA-MB-231 and MCF-7 cells reduced the sensitivity of cancer cells to Iturin A. Interestingly, overexpression of Akt with Akt plasmid in cancer cells caused highly susceptible to induce apoptosis by Iturin A treatment. In a xenograft model, Iturin A inhibited tumor growth with reduced expressions of Ki-67, CD-31, P-Akt, P-GSK3β, P-FoxO3a and P-MAPK. Collectively, these findings imply that Iturin A has potential anticancer effect on breast cancer.


Drug Discovery Today | 2015

Microbial amphiphiles: a class of promising new-generation anticancer agents

Goutam Dey; Rashmi Bharti; Ramkrishna Sen; Mahitosh Mandal

Developing new classes of anticancer molecules has always been a major scientific challenge owing to multidrug resistance of cancer cells to conventional chemotherapeutic agents. Microbial amphiphiles, particularly lipopeptides and glycolipids, have recently emerged as potential new-generation anticancer agents, owing to low toxicity, high efficacy and easy biodegradability. They exhibit anticancer activities by retarding cell cycle progression, inhibiting crucial signaling pathways such as Akt, extracellular signal-regulated kinase/c-Jun N-terminal kinase (ERK/JNK) and Janus kinase/signal transducer and activator of transcription (JAK/STAT), reducing angiogenesis, activating natural killer T (NKT) cells and inducing apoptosis through death receptors in cancer cells. It has been well established that the oncogenic signals of cancer cells are amplified by the overexpression of various membrane-bound receptors such as epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR) and insulin-like growth factor receptor (IGFR). Microbial amphiphiles, upon interaction with the cell membrane, are believed to suppress the activities of these cell surface receptors by fatty acid chain mediated membrane destabilization. This review analyzes the modes and mechanisms of action of these green molecules for application as potential anticancer agents.


Acta Biomaterialia | 2016

Paclitaxel-loaded solid lipid nanoparticles modified with Tyr-3-octreotide for enhanced anti-angiogenic and anti-glioma therapy

Indranil Banerjee; Kakali De; Dibyanti Mukherjee; Goutam Dey; Sankha Chattopadhyay; M. Mukherjee; Mahitosh Mandal; Amal Kumar Bandyopadhyay; Amit Gupta; Santanu Ganguly; Mridula Misra

UNLABELLED Somatostatin receptors (SSTRs) especially subtype 2 (SSTR2) are overexpressed in glioma. By taking advantage of the specific expression of SSTR2 on both glioma neovasculature endothelial cells and glioma cells, we constructed Tyr-3-octreotide (TOC)-modified solid lipid nanoparticles (SLN) loaded with paclitaxel (PTX) to enable tumor neovasculature and tumor cells dual-targeting chemotherapy. In this work, a TOC-polyethylene glycol-lipid (TOC-PEG-lipid) was successfully synthesized and used as a targeting molecule to enhance anticancer efficacy of PTX loaded sterically stabilized lipid nanoparticles. The prepared PTX-loaded SLN modified with TOC (PSM) was characterized by standard methods. In rat C6 glioma cells, PSM improved PTX induced apoptosis. Both tube formation assay and CD31 staining of treated orthotopic glioma tissues confirmed that PSM significantly improved the antiangiogenic ability of PTX in vitro and in vivo, respectively. Radiolabelled PSM achieved a much higher and specific accumulation within the glioma as suggested by the biodistribution and imaging studies. Furthermore, PSM exhibited improved anti-glioma efficacy over unmodified nanoparticles and Taxol in both subcutaneous and orthotopic tumor models. These findings collectively indicate that PSM holds great potential in improving the efficacy of anti-glioma therapy. STATEMENT OF SIGNIFICANCE Somatostatin receptors (SSTRs) especially subtype 2 (SSTR2) are overexpressed in various mammalian cancer cells. Proliferating endothelial cells of neovasculature also express SSTR2. Tyr-3-octreotide (TOC) is a known ligand for SSTR2. We have successfully prepared paclitaxel-loaded solid lipid nanoparticles modified with TOC (PSM) having diameter less than 100nm. We found that PSM improved anti-cancer efficacy of paclitaxel in SSTR2 positive glioma of rats. This improved anti-glioma efficiency of PSM can be attributed to dual-targeting (i.e. tumor cell and neovasculature targeting) efficiency of PSM and promoted anti-cancer drug accumulation at tumor site due to TOC modification of solid lipid nanoparticles. This particular study aims at widening the scope of octreotide-derivative modified nanocarrier by exploring dual-targeting potential of PSM.


ACS Applied Materials & Interfaces | 2016

Tailor-Made Temperature-Sensitive Micelle for Targeted and On-Demand Release of Anticancer Drugs

Sudipta Panja; Goutam Dey; Rashmi Bharti; K. Kumari; Tapas K. Maiti; Mahitosh Mandal; Santanu Chattopadhyay

The design of nanomedicines from the tuned architecture polymer is a leading object of immense research in recent years. Here, smart thermoresponsive micelles were prepared from novel architecture four-arm star block copolymers, namely, pentaerythritol polycaprolactone-b-poly(N-isopropylacrylamide) and pentaerythritol polycaprolactone-b-poly(N-vinylcaprolactam). The polymers were synthesized and tagged with folic acid (FA) to render them as efficient cancer cell targeting cargos. FA-conjugated block copolymers were self-assembled to a nearly spherical (ranging from 15 to 170 nm) polymeric micelle (FA-PM) with a sufficiently lower range of critical micelle concentration (0.59 × 10(-2) to 1.52 × 10(-2) mg/mL) suitable for performing as an efficient drug carrier. The blocks show lower critical solution temperature (LCST) ranging from 30 to 39 °C with high DOX-loading content (24.3%, w/w) as compared to that reported for a linear polymer in the contemporary literature. The temperature-induced reduction in size (57%) of the FA-PM enables a high rate of DOX release (78.57% after 24 h) at a temperature above LCST. The DOX release rate has also been tuned by on-demand administration of temperature. The in vitro biocompatibilities of the blank and DOX-loaded FA-PMs have been studied by the MTT assay. The cellular uptake study proves selective internalization of the FA-PM into cancerous cells (C6 glioma) compared that into normal cells (HaCaT). In vivo administration of the DOX-loaded FA-PMs into the C6 glioma rat tumor model resulted in significant accumulation in tumor sites, which drastically inhibited the tumor volume by ∼83.9% with respect to control without any significant systemic toxicity.


Oncogene | 2016

Diacerein-mediated inhibition of IL-6/IL-6R signaling induces apoptotic effects on breast cancer

Rashmi Bharti; Goutam Dey; Probir Kumar Ojha; Shashi Rajput; Saravana Kumar Jaganathan; Ramkrishna Sen; Mahitosh Mandal

Interleukin-6 (IL-6) signaling network has been implicated in oncogenic transformations making it attractive target for the discovery of novel cancer therapeutics. In this study, potent antiproliferative and apoptotic effect of diacerein were observed against breast cancer. In vitro apoptosis was induced by this drug in breast cancer cells as verified by increased sub-G1 population, LIVE/DEAD assay, cell cytotoxicity and presence of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, as well as downregulation of antiapoptotic proteins Bcl-2 and Bcl-xL and upregulation of apoptotic protein Bax. In addition, apoptosis induction was found to be caspase dependent. Further molecular investigations indicated that diacerein instigated apoptosis was associated with inhibition of IL-6/IL-6R autocrine signaling axis. Suppression of STAT3, MAPK and Akt pathways were also observed as a consequence of diacerein-mediated upstream inhibition of IL-6/IL-6R. Fluorescence study and western blot analysis revealed cytosolic accumulation of STAT3 in diacerein-treated cells. The docking study showed diacerein/IL-6R interaction that was further validated by competitive binding assay and isothermal titration calorimetry. Most interestingly, it was found that diacerein considerably suppressed tumor growth in MDA-MB-231 xenograft model. The in vivo antitumor effect was correlated with decreased proliferation (Ki-67), increased apoptosis (TUNEL) and inhibition of IL-6/IL-6R-mediated STAT3, MAPK and Akt pathway in tumor remnants. Taken together, diacerein offered a novel blueprint for cancer therapy by hampering IL-6/IL-6R/STAT3/MAPK/Akt network.


Molecular Pharmaceutics | 2015

Overcoming Akt Induced Therapeutic Resistance in Breast Cancer through siRNA and Thymoquinone Encapsulated Multilamellar Gold Niosomes.

Shashi Rajput; Nagaprasad Puvvada; B. N. Prashanth Kumar; Siddik Sarkar; Suraj Konar; Rashmi Bharti; Goutam Dey; Abhijit Mazumdar; Amita Pathak; Paul B. Fisher; Mahitosh Mandal

Akt overexpression in cancer causes resistance to traditional chemotherapeutics. Silencing Akt through siRNA provides new therapeutic options; however, poor in vivo siRNA pharmacokinetics impede translation. We demonstrate that acidic milieu-sensitive multilamellar gold niosomes (Nio-Au) permit targeted delivery of both Akt-siRNA and thymoquinone (TQ) in tamoxifen-resistant and Akt-overexpressing MCF7 breast cancer cells. Octadecylamine groups of functionalized gold nanoparticles impart cationic attribute to niosomes, stabilized through polyethylene glycol. TQs aqueous insolubility renders its encapsulation within hydrophobic core, and negatively charged siRNA binds in hydrophilic region of cationic niosomes. These niosomes were exploited to effectively knockdown Akt, thereby sensitizing cells to TQ. Immunoblot studies revealed enhanced apoptosis by inducing p53 and inhibiting MDM2 expression, which was consistent with in vivo xenograft studies. This innovative strategy, using Nio-Au to simultaneously deliver siRNA (devoid of any chemical modification) and therapeutic drug, provides an efficacious approach for treating therapy-resistant cancers with significant translational potential.


RSC Advances | 2015

Correction: Dietary flavone chrysin (5,7-dihydroxyflavone ChR) functionalized highly-stable metal nanoformulations for improved anticancer applications

G. Sathishkumar; Rashmi Bharti; Pradeep K. Jha; M. Selvakumar; Goutam Dey; Rakhi Jha; Murugaraj Jeyaraj; Mahitosh Mandal; S. Sivaramakrishnan

Nanomaterials of noble metals with unique size, shape and composition receives much attention owing to their versatile functionality in personalized cancer nanomedicine. Chrysin (ChR), a natural anticancer bioflavonoid, emerged as a potential drug therapy for almost all types of cancer, however it has poor solubility and bioavailability. Herein, we report a new approach to formulate biofunctionalized metallic silver (ChR–AgNPs) and gold (ChR–AuNPs) nanoparticles using ChR as a direct bioreductant and capping agent. Size and dispersity of nanoparticles (NPs) were controlled through fixing different reaction conditions such as the temperature, pH, concentration of metal ion, stoichiometric proportion of the reaction mixture and incubation time based on their optical properties and SPR effect in UV-visible spectroscopy. The role of hydroxyl and carbonyl groups in functionalizing the metal ions with ChR was confirmed with Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. It was also substantiated that the oxygen group from ChR donates electrons to metal ion and results in complexation; ionic Ag+ and Au3+ were reduced to Ag0 and Au0 nano-forms. The physiochemical state of obtained NPs was characterized through different exclusive instrumentation, which shows the presence of highly-stable, spherical, crystalline ChR–AgNPs and ChR–AuNPs with an average size of 14 ± 6 nm and 6 ± 2 nm respectively. In vitro anticancer results revealed that the formulated metallic NPs exhibit enhanced cytotoxicity over ChR in the treatment of two different breast carcinoma cell lines (MDA-MB-231 and MDA-MB-468). Furthermore, it was evident that the NPs cause cell death via the induction of apoptosis. A hemolysis assay with human erythrocytes demonstrates good blood biocompatibility of the NPs. Thus, the ChR functionalized metal NPs can be potentially employed as a combinational drug-nano platform for breast cancer therapy.

Collaboration


Dive into the Goutam Dey's collaboration.

Top Co-Authors

Avatar

Mahitosh Mandal

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Rashmi Bharti

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Ipsita Pal

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

B. N. Prashanth Kumar

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Kaushik Kumar Dey

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Ramkrishna Sen

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Aditya Parekh

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Chandan Das

Indian Institute of Technology Guwahati

View shared research outputs
Top Co-Authors

Avatar

Shashi Rajput

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Sheetal Parida

Indian Institute of Technology Kharagpur

View shared research outputs
Researchain Logo
Decentralizing Knowledge