Baktiar O. Karim
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Baktiar O. Karim.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Munekazu Yamakuchi; Craig Lotterman; Clare Bao; Ralph H. Hruban; Baktiar O. Karim; Joshua T. Mendell; David L. Huso; Charles J. Lowenstein
The pathway involving the tumor suppressor gene TP53 can regulate tumor angiogenesis by unclear mechanisms. Here we show that p53 regulates hypoxic signaling through the transcriptional regulation of microRNA-107 (miR-107). We found that miR-107 is a microRNA expressed by human colon cancer specimens and regulated by p53. miR-107 decreases hypoxia signaling by suppressing expression of hypoxia inducible factor-1β (HIF-1β). Knockdown of endogenous miR-107 enhances HIF-1β expression and hypoxic signaling in human colon cancer cells. Conversely, overexpression of miR-107 inhibits HIF-1β expression and hypoxic signaling. Furthermore, overexpression of miR-107 in tumor cells suppresses tumor angiogenesis, tumor growth, and tumor VEGF expression in mice. Finally, in human colon cancer specimens, expression of miR-107 is inversely associated with expression of HIF-1β. Taken together these data suggest that miR-107 can mediate p53 regulation of hypoxic signaling and tumor angiogenesis.
Cell | 2005
Ling Yang Hao; Mary Armanios; Margaret A. Strong; Baktiar O. Karim; David M. Feldser; David L. Huso; Carol W. Greider
Autosomal-dominant dyskeratosis congenita is associated with heterozygous mutations in telomerase. To examine the dosage effect of telomerase, we generated a line of mTR+/- mice on the CAST/EiJ background, which has short telomeres. Interbreeding of heterozygotes resulted in progressive telomere shortening, indicating that limiting telomerase compromises telomere maintenance. In later-generation heterozygotes, we observed a decrease in tissue renewal capacity in the bone marrow, intestines, and testes that resembled defects seen in dyskeratosis congenita patients. The progressive worsening of disease with decreasing telomere length suggests that short telomeres, not telomerase level, cause stem cell failure. Further, wild-type mice derived from the late-generation heterozygous parents, termed wt*, also had short telomeres and displayed a germ cell defect, indicating that telomere length determines these phenotypes. We propose that short telomeres in mice that have normal telomerase levels can cause an occult form of genetic disease.
American Journal of Human Genetics | 2009
Mary Armanios; Jonathan K. Alder; Erin M. Parry; Baktiar O. Karim; Margaret A. Strong; Carol W. Greider
Telomerase function is critical for telomere maintenance. Mutations in telomerase components lead to telomere shortening and progressive bone marrow failure in the premature aging syndrome dyskeratosis congenita. Short telomeres are also acquired with aging, yet the role that they play in mediating age-related disease is not fully known. We generated wild-type mice that have short telomeres. In these mice, we identified hematopoietic and immune defects that resembled those present in dyskeratosis congenita patients. When mice with short telomeres were interbred, telomere length was only incrementally restored, and even several generations later, wild-type mice with short telomeres still displayed degenerative defects. Our findings implicate telomere length as a unique heritable trait that, when short, is sufficient to mediate the degenerative defects of aging, even when telomerase is wild-type.
Development | 2005
Yingli Wang; Ran Xiao; Fan Yang; Baktiar O. Karim; Anthony J. Iacovelli; Juanliang Cai; Charles P. Lerner; Joan T. Richtsmeier; Jen M. Leszl; Cheryl A. Hill; Kai Yu; David M. Ornitz; Jennifer H. Elisseeff; David L. Huso; Ethylin Wang Jabs
Apert syndrome is an autosomal dominant disorder characterized by malformations of the skull, limbs and viscera. Two-thirds of affected individuals have a S252W mutation in fibroblast growth factor receptor 2 (FGFR2). To study the pathogenesis of this condition, we generated a knock-in mouse model with this mutation. The Fgfr2+/S252W mutant mice have abnormalities of the skeleton, as well as of other organs including the brain, thymus, lungs, heart and intestines. In the mutant neurocranium, we found a midline sutural defect and craniosynostosis with abnormal osteoblastic proliferation and differentiation. We noted ectopic cartilage at the midline sagittal suture, and cartilage abnormalities in the basicranium, nasal turbinates and trachea. In addition, from the mutant long bones, in vitro cell cultures grown in osteogenic medium revealed chondrocytes, which were absent in the controls. Our results suggest that altered cartilage and bone development play a significant role in the pathogenesis of the Apert syndrome phenotype.
International Journal of Cancer | 2007
William O. Osburn; Baktiar O. Karim; Patrick M. Dolan; Guosheng Liu; Masayuki Yamamoto; David L. Huso; Thomas W. Kensler
Chronic inflammation has been associated with increased risk of developing cancer. The transcription factor NF‐E2‐related factor 2 (Nrf2) controls the expression of numerous antioxidative enzymes that have been shown to attenuate acute inflammation. The present study investigated the role of Nrf2 genotype in modulating inflammation‐promoted colorectal tumorigenesis. Nrf2 wild‐type (WT) and Nrf2‐deficient (N0) mice were administered a single dose of azoxymethane followed by a 1‐week dose of drinking water with or without 1% dextran sulfate sodium (DSS). Aberrant crypt foci were counted 3 weeks after the cessation of DSS treatment. DSS treatment significantly increased numbers of aberrant crypt foci in N0 mice, but not WT mice. The extent of inflammation over the course of DSS treatment was analyzed in both genotypes. Histological analysis of colon sections revealed that N0 mice had markedly increased inflammation and mucosal damage when compared to WT mice beginning on Day 6 of DSS treatment. Although similar levels of inflammatory and oxidative damage biomarkers were evident in colons from WT and N0 mice at the start of DSS treatment, increased colonic proinflammatory cytokine mRNA transcript levels, myeloperoxidase activity and 3‐nitrotyrosine immunoreactivity were observed on Day 6 of DSS treatment in N0 mice, but not WT mice. Additionally, DSS treatment resulted in increased lipid peroxidation and loss of aconitase activity in N0 mice, but not WT mice, reflecting increased oxidative damage in colons from N0 mice. Taken together, these results clearly illustrate the role of Nrf2 in regulating an adaptive response that protects against early‐phase inflammation‐mediated tumorigenesis.
Infection and Immunity | 2009
Ki Jong Rhee; Shaoguang Wu; Xinqun Wu; David L. Huso; Baktiar O. Karim; Augusto A. Franco; Shervin Rabizadeh; Jonathan E. Golub; Lauren E. Mathews; Jai Shin; R. Balfour Sartor; Douglas T. Golenbock; Abdel Rahim A. Hamad; Christine Gan; Franck Housseau; Cynthia L. Sears
ABSTRACT Enterotoxigenic Bacteroides fragilis (ETBF) causes diarrhea and is implicated in inflammatory bowel diseases and colorectal cancer. The only known ETBF virulence factor is the Bacteroides fragilis toxin (BFT), which induces E-cadherin cleavage, interleukin-8 secretion, and epithelial cell proliferation. A murine model for ETBF has not been characterized. Specific pathogen-free (SPF) C57BL/6J or germfree 129S6/SvEv mice were orally inoculated with wild-type ETBF (WT-ETBF) strains, a nontoxigenic WT strain of B. fragilis (WT-NTBF), WT-NTBF overexpressing bft (rETBF), or WT-NTBF overexpressing a biologically inactive mutated bft (rNTBF). In SPF and germfree mice, ETBF caused colitis but was lethal only in germfree mice. Colonic histopathology demonstrated mucosal thickening with inflammatory cell infiltration, crypt abscesses, and epithelial cell exfoliation, erosion, and ulceration. SPF mice colonized with rETBF mimicked WT-ETBF, whereas rNTBF caused no histopathology. Intestinal epithelial E-cadherin was rapidly cleaved in vivo in WT-ETBF-colonized mice and in vitro in intestinal tissues cultured with purified BFT. ETBF mice colonized for 16 months exhibited persistent colitis. BFT did not directly induce lymphocyte proliferation, dendritic cell stimulation, or Toll-like receptor activation. In conclusion, WT-ETBF induced acute then persistent colitis in SPF mice and rapidly lethal colitis in WT germfree mice. Our data support the hypothesis that chronic colonization with the human commensal ETBF can induce persistent, subclinical colitis in humans.
Science Translational Medicine | 2014
Nicholas J. Roberts; Linping Zhang; Filip Janku; Amanda Collins; Ren Yuan Bai; Verena Staedtke; Anthony Rusk; David Tung; Maria Miller; Jeffrey James Roix; Kristen V. Khanna; Ravi Murthy; Robert S. Benjamin; Thorunn Helgason; Ariel D. Szvalb; Justin E. Bird; Sinchita Roy-Chowdhuri; Halle H. Zhang; Yuan Qiao; Baktiar O. Karim; Jennifer McDaniel; Amanda K. Elpiner; Alexandra Sahora; Joshua Lachowicz; Brenda S. Phillips; Avenelle Turner; Mary K. Klein; Gerald Post; Luis A. Diaz; Gregory J. Riggins
Clostridium novyi-NT targets aberrant tumor physiology and can produce a precise, robust, and reproducible antitumor response. Fighting Cancer with Clostridium Tumors are composed of necrotic, hypoxic, and well-oxygenated regions. Hypoxic tumor regions are more resistant to systemic anticancer agents and radiotherapy. However, they provide a fertile ground for the growth of anaerobic bacteria. Roberts et al. use an attenuated strain of the anaerobic, spore-forming bacterium Clostridium novyi (C. novyi-NT) and demonstrate precise, robust, and reproducible antitumor responses when C. novyi-NT spores were injected into tumors of rats, dogs, and one human patient. These results support the further development of intratumoral injections of C. novyi-NT spores as a therapeutic for patients with locally advanced, nonresectable cancers. Species of Clostridium bacteria are notable for their ability to lyse tumor cells growing in hypoxic environments. We show that an attenuated strain of Clostridium novyi (C. novyi-NT) induces a microscopically precise, tumor-localized response in a rat orthotopic brain tumor model after intratumoral injection. It is well known, however, that experimental models often do not reliably predict the responses of human patients to therapeutic agents. We therefore used naturally occurring canine tumors as a translational bridge to human trials. Canine tumors are more like those of humans because they occur in animals with heterogeneous genetic backgrounds, are of host origin, and are due to spontaneous rather than engineered mutations. We found that intratumoral injection of C. novyi-NT spores was well tolerated in companion dogs bearing spontaneous solid tumors, with the most common toxicities being the expected symptoms associated with bacterial infections. Objective responses were observed in 6 of 16 dogs (37.5%), with three complete and three partial responses. On the basis of these encouraging results, we treated a human patient who had an advanced leiomyosarcoma with an intratumoral injection of C. novyi-NT spores. This treatment reduced the tumor within and surrounding the bone. Together, these results show that C. novyi-NT can precisely eradicate neoplastic tissues and suggest that further clinical trials of this agent in selected patients are warranted.
Molecular and Cellular Biology | 2011
Margaret A. Strong; Sofia L. Vidal-Cardenas; Baktiar O. Karim; Huimin Yu; Nini Guo; Carol W. Greider
ABSTRACT Telomerase is essential for telomere length maintenance. Mutations in either of the two core components of telomerase, telomerase RNA (TR) or the catalytic protein component telomerase reverse transcriptase (TERT), cause the genetic disorders dyskeratosis congenita, pulmonary fibrosis, and other degenerative diseases. Overexpression of the TERT protein has been reported to have telomere length-independent roles, including regulation of the Wnt signaling pathway. To examine the phenotypes of TERT haploinsufficiency and determine whether loss of function of TERT has effects other than those associated with telomere shortening, we characterized both mTERT+/− and mTERT−/− mice on the CAST/EiJ genetic background. Phenotypic analysis showed a loss of tissue renewal capacity with progressive breeding of heterozygous mice that was indistinguishable from that of mTR-deficient mice. mTERT−/− mice, from heterozygous mTERT+/− mouse crosses, were born at the expected Mendelian ratio (26.5%; n = 1,080 pups), indicating no embryonic lethality of this genotype. We looked for, and failed to find, hallmarks of Wnt deficiency in various adult and embryonic tissues, including those of the lungs, kidneys, brain, and skeleton. Finally, mTERT−/− cells showed wild-type levels of Wnt signaling in vitro. Thus, while TERT overexpression in some settings may activate the Wnt pathway, loss of function in a physiological setting has no apparent effects on Wnt signaling. Our results indicate that both TERT and TR are haploinsufficient and that their deficiency leads to telomere shortening, which limits tissue renewal. Our studies imply that hypomorphic loss-of-function alleles of hTERT and hTR should cause a similar disease spectrum in humans.
Cancer Research | 2007
Carlo Rago; David L. Huso; Frank Diehl; Baktiar O. Karim; Guosheng Liu; Nickolas Papadopoulos; Yardena Samuels; Victor E. Velculescu; Bert Vogelstein; Kenneth W. Kinzler; Luis A. Diaz
Internal human xenografts provide valuable animal models to study the microenvironments and metastatic processes occurring in human cancers. However, the use of such models is hampered by the logistical difficulties of reproducibly and simply assessing tumor burden. We developed a high-sensitivity assay for quantifying human DNA in small volumes of mouse plasma, enabling in-life monitoring of systemic tumor burden. Growth kinetics analyses of various xenograft models showed the utility of circulating human DNA as a biomarker. We found that human DNA concentration reproducibly increased with disease progression and decreased after successful therapeutic intervention. A marked, transient spike in circulating human tumor DNA occurred immediately after cytotoxic therapy or surgery. This simple assay may find broad utility in target validation studies and preclinical drug development programs.
Cancer Research | 2005
Rebecca C. Osthus; Baktiar O. Karim; Julia E. Prescott; B. Douglas Smith; Michael R. McDevitt; David L. Huso; Chi V. Dang
MYC is frequently overexpressed in human cancers, but the downstream events contributing to tumorigenesis remain incompletely understood. MYC encodes an oncogenic transcription factor, of which target genes presumably contribute to cellular transformation. Although Myc regulates about 15% of genes and combinations of target genes are likely required for tumorigenesis, we studied in depth the expression of the Myc target gene, JPO1/CDCA7, in human cancers and its ability to provoke tumorigenesis in transgenic mice. JPO1/CDCA7 is frequently overexpressed in human cancers, and in particular, its expression is highly elevated in chronic myelogenous leukemia blast crisis as compared with the chronic phase. In murine lymphoid tissues, ectopic human JPO1/CDCA7 expression resulted in a 2-fold increased risk of lymphoid malignancies at 1 year. The transgene, which was driven by the H2-K promoter, exhibited leaky expression in nonlymphoid tissues such as kidney. We observed a significant increased incidence of transgenic animal solid tumors, which were not seen in littermate controls. These observations suggest that JPO1/CDCA7 may contribute to Myc-mediated tumorigenesis.