Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Balázs Tamás Németh is active.

Publication


Featured researches published by Balázs Tamás Németh.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Rat model of exercise-induced cardiac hypertrophy: hemodynamic characterization using left ventricular pressure-volume analysis

Tamás Radovits; Attila Oláh; Árpád Lux; Balázs Tamás Németh; László Hidi; Ede Birtalan; Dalma Kellermayer; Csaba Mátyás; Gábor Szabó; Béla Merkely

Long-term exercise training is associated with characteristic structural and functional changes of the myocardium, termed athletes heart. Several research groups investigated exercise training-induced left ventricular (LV) hypertrophy in animal models; however, only sporadic data exist about detailed hemodynamics. We aimed to provide functional characterization of exercise-induced cardiac hypertrophy in a rat model using the in vivo method of LV pressure-volume (P-V) analysis. After inducing LV hypertrophy by swim training, we assessed LV morphometry by echocardiography and performed LV P-V analysis using a pressure-conductance microcatheter to investigate in vivo cardiac function. Echocardiography showed LV hypertrophy (LV mass index: 2.41 ± 0.09 vs. 2.03 ± 0.08 g/kg, P < 0.01), which was confirmed by heart weight data and histomorphometry. Invasive hemodynamic measurements showed unaltered heart rate, arterial pressure, and LV end-diastolic volume along with decreased LV end-systolic volume, thus increased stroke volume and ejection fraction (73.7 ± 0.8 vs. 64.1 ± 1.5%, P < 0.01) in trained versus untrained control rats. The P-V loop-derived sensitive, load-independent contractility indexes, such as slope of end-systolic P-V relationship or preload recruitable stroke work (77.0 ± 6.8 vs. 54.3 ± 4.8 mmHg, P = 0.01) were found to be significantly increased. The observed improvement of ventriculoarterial coupling (0.37 ± 0.02 vs. 0.65 ± 0.08, P < 0.01), along with increased LV stroke work and mechanical efficiency, reflects improved mechanoenergetics of exercise-induced cardiac hypertrophy. Despite the significant hypertrophy, we observed unaltered LV stiffness (slope of end-diastolic P-V relationship: 0.043 ± 0.007 vs. 0.040 ± 0.006 mmHg/μl) and improved LV active relaxation (τ: 10.1 ± 0.6 vs. 11.9 ± 0.2 ms, P < 0.01). According to our knowledge, this is the first study that provides characterization of functional changes and hemodynamic relations in exercise-induced cardiac hypertrophy.


International Journal of Cardiology | 2015

Cardiac effects of acute exhaustive exercise in a rat model

Attila Oláh; Balázs Tamás Németh; Csaba Mátyás; Eszter M. Horváth; László Hidi; Ede Birtalan; Dalma Kellermayer; Mihály Ruppert; Gergő Merkely; Gábor Szabó; Béla Merkely; Tamás Radovits

BACKGROUND The role of physical exercise in the prevention and treatment of cardiovascular diseases has been well described, however, elevations in cardionecrotic biomarkers after prolonged exercise (i.e. ultramarathon running) were observed. We aimed at understanding the biochemical, molecular biological, structural and functional alterations in the heart after exhaustive exercise in a rat model. METHODS Rats of the exercise group were forced to swim for 3h with 5% body weight (workload) attached to the tail, control rats were taken into the water for 5min. After a 2-hour recovery period we performed left ventricular (LV) pressure-volume analysis to investigate LV function and mechanoenergetics. Additionally, blood and myocardium samples were harvested for biochemical and histological examinations. Gene expression changes were detected by qRT-PCR. RESULTS When compared to controls, elevated plasma levels of cardiac troponin T and creatine kinase were detected after exhaustive exercise. Histological analysis showed sporadic fragmentation of myocardial structure and leukocyte infiltration in the exercised group. We observed increased end-systolic volume, decreased ejection fraction, impaired contractility (preload recruitable stroke work) and mechanoenergetics (ventriculoarterial coupling, mechanical efficiency) of LV after exercise. Myocardial expression of major antioxidant enzymes was increased along with increased myocardial nitro-oxidative stress. Bax/Bcl-2 ratio and TUNEL staining showed enhanced apoptotic signaling. Exhaustive exercise also resulted in the dysregulation of the matrix metalloproteinase system. CONCLUSIONS Excessive physical activity has an adverse effect on the heart. The observed functional impairment is associated with increased nitro-oxidative stress, enhanced apoptotic signaling and dysregulation of the matrix metalloproteinase system after exhaustive exercise.


European Journal of Heart Failure | 2017

Prevention of the development of heart failure with preserved ejection fraction by the phosphodiesterase-5A inhibitor vardenafil in rats with type 2 diabetes.

Csaba Mátyás; Balázs Tamás Németh; Attila Oláh; Marianna Török; Mihály Ruppert; Dalma Kellermayer; Bálint András Barta; Gábor Szabó; Gábor Kökény; Eszter M. Horváth; Beáta Bódi; Zoltán Papp; Béla Merkely; Tamás Radovits

Heart failure with preserved ejection fraction (HFpEF) has a great epidemiological burden. The pathophysiological role of cyclic guanosine monophosphate (cGMP) signalling has been intensively investigated in HFpEF. Elevated levels of cGMP have been shown to exert cardioprotective effects in various cardiovascular diseases, including diabetic cardiomyopathy. We investigated the effect of long‐term preventive application of the phosphodiesterase‐5A (PDE5A) inhibitor vardenafil in diabetic cardiomyopathy‐associated HFpEF.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Strain and strain rate by speckle-tracking echocardiography correlate with pressure-volume loop-derived contractility indices in a rat model of athlete's heart

Attila Kovács; Attila Oláh; Árpád Lux; Csaba Mátyás; Balázs Tamás Németh; Dalma Kellermayer; Mihály Ruppert; Marianna Török; Lilla Szabó; Anna Meltzer; Alexandra Assabiny; Ede Birtalan; Béla Merkely; Tamás Radovits

Contractile function is considered to be precisely measurable only by invasive hemodynamics. We aimed to correlate strain values measured by speckle-tracking echocardiography (STE) with sensitive contractility parameters of pressure-volume (P-V) analysis in a rat model of exercise-induced left ventricular (LV) hypertrophy. LV hypertrophy was induced in rats by swim training and was compared with untrained controls. Echocardiography was performed using a 13-MHz linear transducer to obtain LV long- and short-axis recordings for STE analysis (GE EchoPAC). Global longitudinal (GLS) and circumferential strain (GCS) and longitudinal (LSr) and circumferential systolic strain rate (CSr) were measured. LV P-V analysis was performed using a pressure-conductance microcatheter, and load-independent contractility indices [slope of the end-systolic P-V relationship (ESPVR), preload recruitable stroke work (PRSW), and maximal dP/dt-end-diastolic volume relationship (dP/dtmax-EDV)] were calculated. Trained rats had increased LV mass index (trained vs. control; 2.76 ± 0.07 vs. 2.14 ± 0.05 g/kg, P < 0.001). P-V loop-derived contractility parameters were significantly improved in the trained group (ESPVR: 3.58 ± 0.22 vs. 2.51 ± 0.11 mmHg/μl; PRSW: 131 ± 4 vs. 104 ± 2 mmHg, P < 0.01). Strain and strain rate parameters were also supernormal in trained rats (GLS: -18.8 ± 0.3 vs. -15.8 ± 0.4%; LSr: -5.0 ± 0.2 vs. -4.1 ± 0.1 Hz; GCS: -18.9 ± 0.8 vs. -14.9 ± 0.6%; CSr: -4.9 ± 0.2 vs. -3.8 ± 0.2 Hz, P < 0.01). ESPVR correlated with GLS (r = -0.71) and LSr (r = -0.53) and robustly with GCS (r = -0.83) and CSr (r = -0.75, all P < 0.05). PRSW was strongly related to GLS (r = -0.64) and LSr (r = -0.71, both P < 0.01). STE can be a feasible and useful method for animal experiments. In our rat model, strain and strain rate parameters closely reflected the improvement in intrinsic contractile function induced by exercise training.


Experimental Diabetes Research | 2015

An Altered Pattern of Myocardial Histopathological and Molecular Changes Underlies the Different Characteristics of Type-1 and Type-2 Diabetic Cardiac Dysfunction

Tamás Radovits; Sevil Korkmaz; Csaba Mátyás; Attila Oláh; Balázs Tamás Németh; S Páli; Kristóf Hirschberg; Alina Zubarevich; Patricia Neh Gwanmesia; Shiliang Li; Sivakkanan Loganathan; Enikő Barnucz; Béla Merkely; Gábor Szabó

Increasing evidence suggests that both types of diabetes mellitus (DM) lead to cardiac structural and functional changes. In this study we investigated and compared functional characteristics and underlying subcellular pathological features in rat models of type-1 and type-2 diabetic cardiomyopathy. Type-1 DM was induced by streptozotocin. For type-2 DM, Zucker Diabetic Fatty (ZDF) rats were used. Left ventricular pressure-volume analysis was performed to assess cardiac function. Myocardial nitrotyrosine immunohistochemistry, TUNEL assay, hematoxylin-eosin, and Massons trichrome staining were performed. mRNA and protein expression were quantified by qRT-PCR and Western blot. Marked systolic dysfunction in type-1 DM was associated with severe nitrooxidative stress, apoptosis, and fibrosis. These pathological features were less pronounced or absent, while cardiomyocyte hypertrophy was comparable in type-2 DM, which was associated with unaltered systolic function and increased diastolic stiffness. mRNA-expression of hypertrophy markers c-fos, c-jun, and β-MHC, as well as pro-apoptotic caspase-12, was elevated in type-1, while it remained unaltered or only slightly increased in type-2 DM. Expression of the profibrotic TGF-β 1 was upregulated in type-1 and showed a decrease in type-2 DM. We compared type-1 and type-2 diabetic cardiomyopathy in standard rat models and described an altered pattern of key pathophysiological features in the diabetic heart and corresponding functional consequences.


American Journal of Physiology-heart and Circulatory Physiology | 2016

Physiological and pathological left ventricular hypertrophy of comparable degree is associated with characteristic differences of in vivo hemodynamics.

Attila Oláh; Balázs Tamás Németh; Csaba Mátyás; László Hidi; Árpád Lux; Mihály Ruppert; Dalma Kellermayer; Alex Ali Sayour; Lilla Szabó; Marianna Török; Anna Meltzer; László Gellér; Béla Merkely; Tamás Radovits

Left ventricular (LV) hypertrophy is a physiological or pathological response of LV myocardium to increased cardiac load. We aimed at investigating and comparing hemodynamic alterations in well-established rat models of physiological hypertrophy (PhyH) and pathological hypertrophy (PaH) by using LV pressure-volume (P-V) analysis. PhyH and PaH were induced in rats by swim training and by abdominal aortic banding, respectively. Morphology of the heart was investigated by echocardiography. Characterization of cardiac function was completed by LV P-V analysis. In addition, histological and molecular biological measurements were performed. Echocardiography revealed myocardial hypertrophy of similar degree in both models, which was confirmed by post-mortem heart weight data. In aortic-banded rats we detected subendocardial fibrosis. Reactivation of fetal gene program could be observed only in the PaH model. PhyH was associated with increased stroke volume, whereas unaltered stroke volume was detected in PaH along with markedly elevated end-systolic pressure values. Sensitive indexes of LV contractility were increased in both models, in parallel with the degree of hypertrophy. Active relaxation was ameliorated in athletes heart, whereas it showed marked impairment in PaH. Mechanical efficiency and ventriculo-arterial coupling were improved in PhyH, whereas they remained unchanged in PaH. Myocardial gene expression of mitochondrial regulators showed marked differences between PaH and PhyH. We provided the first comparative hemodynamic characterization of PhyH and PaH in relevant rodent models. Increased LV contractility could be observed in both types of LV hypertrophy; characteristic distinction was detected in diastolic function (active relaxation) and mechanoenergetics (mechanical efficiency), which might be explained by mitochondrial differences.


PLOS ONE | 2014

Total Aortic Arch Replacement: Superior Ventriculo-Arterial Coupling with Decellularized Allografts Compared with Conventional Prostheses

Alexander Weymann; Tamás Radovits; Bastian Schmack; Sevil Korkmaz; Shiliang Li; Ines Pätzold; Peter Moritz Becher; István Hartyánszky; Pál Soós; Gergő Merkely; Balázs Tamás Németh; Roland Istók; Gábor Veres; Béla Merkely; Konstantin Terytze; Matthias Karck; Gábor Szabó

Background To date, no experimental or clinical study provides detailed analysis of vascular impedance changes after total aortic arch replacement. This study investigated ventriculoarterial coupling and vascular impedance after replacement of the aortic arch with conventional prostheses vs. decellularized allografts. Methods After preparing decellularized aortic arch allografts, their mechanical, histological and biochemical properties were evaluated and compared to native aortic arches and conventional prostheses in vitro. In open-chest dogs, total aortic arch replacement was performed with conventional prostheses and compared to decellularized allografts (n = 5/group). Aortic flow and pressure were recorded continuously, left ventricular pressure-volume relations were measured by using a pressure-conductance catheter. From the hemodynamic variables end-systolic elastance (Ees), arterial elastance (Ea) and ventriculoarterial coupling were calculated. Characteristic impedance (Z) was assessed by Fourier analysis. Results While Ees did not differ between the groups and over time (4.1±1.19 vs. 4.58±1.39 mmHg/mL and 3.21±0.97 vs. 3.96±1.16 mmHg/mL), Ea showed a higher increase in the prosthesis group (4.01±0.67 vs. 6.18±0.20 mmHg/mL, P<0.05) in comparison to decellularized allografts (5.03±0.35 vs. 5.99±1.09 mmHg/mL). This led to impaired ventriculoarterial coupling in the prosthesis group, while it remained unchanged in the allograft group (62.5±50.9 vs. 3.9±23.4%). Z showed a strong increasing tendency in the prosthesis group and it was markedly higher after replacement when compared to decellularized allografts (44.6±8.3dyn·sec·cm−5 vs. 32.4±2.0dyn·sec·cm−5, P<0.05). Conclusions Total aortic arch replacement leads to contractility-afterload mismatch by means of increased impedance and invert ventriculoarterial coupling ratio after implantation of conventional prostheses. Implantation of decellularized allografts preserves vascular impedance thereby improving ventriculoarterial mechanoenergetics after aortic arch replacement.


American Journal of Physiology-heart and Circulatory Physiology | 2016

Myocardial reverse remodeling after pressure unloading is associated with maintained cardiac mechanoenergetics in a rat model of left ventricular hypertrophy

Mihály Ruppert; Sevil Korkmaz-Icöz; Shiliang Li; Balázs Tamás Németh; Péter Hegedűs; Paige Brlecic; Csaba Mátyás; Markus Zorn; Béla Merkely; Matthias Karck; Tamás Radovits; Gábor Szabó

Pressure unloading represents the only effective therapy in increased afterload-induced left ventricular hypertrophy (LVH) as it leads to myocardial reverse remodeling (reduction of increased left ventricular mass, attenuated myocardial fibrosis) and preserved cardiac function. However, the effect of myocardial reverse remodeling on cardiac mechanoenergetics has not been elucidated. Therefore, we aimed to provide a detailed hemodynamic characterization in a rat model of LVH undergoing pressure unloading. Pressure overload was induced in Sprague-Dawley rats by abdominal aortic banding for 6 (AB 6th wk) or 12 wk (AB 12th wk). Sham-operated animals served as controls. Aortic debanding procedure was performed after the 6th experimental week (debanded 12th wk) to investigate the regression of LVH. Pressure unloading resulted in significant reduction of LVH (heart weight-to-tibial length ratio: 0.38 ± 0.01 vs. 0.58 ± 0.02 g/mm, cardiomyocyte diameter: 18.3 ± 0.1 vs. 24.1 ± 0.8 μm debanded 12th wk vs. AB 12th wk, P < 0.05), attenuated the extracellular matrix remodeling (Massons score: 1.37 ± 0.13 vs. 1.73 ± 0.10, debanded 12th wk vs. AB 12th wk, P < 0.05), provided protection against the diastolic dysfunction, and reversed the maladaptive contractility augmentation (slope of end-systolic pressure-volume relationship: 1.39 ± 0.24 vs. 2.04 ± 0.09 mmHg/μl, P < 0.05 debanded 12th wk vs. AB 6th wk, P < 0.05). In addition, myocardial reverse remodeling was also associated with preserved ventriculoarterial coupling and increased mechanical efficiency (50.6 ± 2.8 vs. 38.9 ± 2.5%, debanded 12th wk vs. AB 12th wk, P < 0.05), indicating a complete functional and mechanoenergetic recovery. According to our best knowledge, this is the first study demonstrating that the regression of LVH is accompanied by maintained cardiac mechanoenergetics.


PLOS ONE | 2017

The issue of plasma asymmetric dimethylarginine reference range – A systematic review and meta-analysis

Balázs Tamás Németh; Zénó Ajtay; László Hejjel; Tamás Ferenci; Zoltán Ábrám; Edit Murányi; István Kiss

Background Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase, marker and mediator of endothelial dysfunction. Several studies have demonstrated its value in cardiovascular risk stratification and all-cause mortality prediction. The aim was to determine the reference range of plasma ADMA in healthy adults. Methods and results Taking into account the most widely used ADMA measurement methods, only studies using either high performance liquid chromatography (HPLC) -with fluorescence or mass spectrometric detection-, or enzyme-linked immunosorbent assay (ELISA) to quantify plasma ADMA concentrations were enrolled. 66 studies were included in the quantitative analysis (24 using ELISA and 42 using HPLC) reporting a total number of 5528 non-diabetic, non-hypertensive, non-obese adults without any medication (3178 men and 2350 women, 41.6 ± 16.9 years old). The reference range of ADMA (in μmol/l with 95% confidence interval in parenthesis) was 0.34 (0.29–0.38)– 1.10 (0.85–1.35) with a mean of 0.71 (0.57–0.85) (n = 4093) measured by HPLC and 0.25 (0.18–0.31)– 0.92 (0.76–1.09) with a mean of 0.57 (0.48–0.66) (n = 1435) by ELISA. Conclusions Numerous publications suggested that asymmetric dimethylarginine is not only an outstanding tool of disease outcome prediction but also a new potential therapeutic target substance; the reference range provided by this meta-analysis can become of great importance and aid to further investigations. However, developing a standard measurement method would be beneficial to facilitate the clinical usage of ADMA.


Scientific Reports | 2016

Cinaciguat prevents the development of pathologic hypertrophy in a rat model of left ventricular pressure overload.

Balázs Tamás Németh; Csaba Mátyás; Attila Oláh; Árpád Lux; László Hidi; Mihály Ruppert; Dalma Kellermayer; Gábor Kökény; Gábor Szabó; Béla Merkely; Tamás Radovits

Pathologic myocardial hypertrophy develops when the heart is chronically pressure-overloaded. Elevated intracellular cGMP-levels have been reported to prevent the development of pathologic myocardial hypertrophy, therefore we investigated the effects of chronic activation of the cGMP producing enzyme, soluble guanylate cyclase by Cinaciguat in a rat model of pressure overload-induced cardiac hypertrophy. Abdominal aortic banding (AAB) was used to evoke pressure overload-induced cardiac hypertrophy in male Wistar rats. Sham operated animals served as controls. Experimental and control groups were treated with 10 mg/kg/day Cinaciguat (Cin) or placebo (Co) p.o. for six weeks, respectively. Pathologic myocardial hypertrophy was present in the AABCo group following 6 weeks of pressure overload of the heart, evidenced by increased relative heart weight, average cardiomyocyte diameter, collagen content and apoptosis. Cinaciguat did not significantly alter blood pressure, but effectively attenuated all features of pathologic myocardial hypertrophy, and normalized functional changes, such as the increase in contractility following AAB. Our results demonstrate that chronic enhancement of cGMP signalling by pharmacological activation of sGC might be a novel therapeutic approach in the prevention of pathologic myocardial hypertrophy.

Collaboration


Dive into the Balázs Tamás Németh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge