Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mihály Ruppert is active.

Publication


Featured researches published by Mihály Ruppert.


International Journal of Cardiology | 2015

Cardiac effects of acute exhaustive exercise in a rat model

Attila Oláh; Balázs Tamás Németh; Csaba Mátyás; Eszter M. Horváth; László Hidi; Ede Birtalan; Dalma Kellermayer; Mihály Ruppert; Gergő Merkely; Gábor Szabó; Béla Merkely; Tamás Radovits

BACKGROUND The role of physical exercise in the prevention and treatment of cardiovascular diseases has been well described, however, elevations in cardionecrotic biomarkers after prolonged exercise (i.e. ultramarathon running) were observed. We aimed at understanding the biochemical, molecular biological, structural and functional alterations in the heart after exhaustive exercise in a rat model. METHODS Rats of the exercise group were forced to swim for 3h with 5% body weight (workload) attached to the tail, control rats were taken into the water for 5min. After a 2-hour recovery period we performed left ventricular (LV) pressure-volume analysis to investigate LV function and mechanoenergetics. Additionally, blood and myocardium samples were harvested for biochemical and histological examinations. Gene expression changes were detected by qRT-PCR. RESULTS When compared to controls, elevated plasma levels of cardiac troponin T and creatine kinase were detected after exhaustive exercise. Histological analysis showed sporadic fragmentation of myocardial structure and leukocyte infiltration in the exercised group. We observed increased end-systolic volume, decreased ejection fraction, impaired contractility (preload recruitable stroke work) and mechanoenergetics (ventriculoarterial coupling, mechanical efficiency) of LV after exercise. Myocardial expression of major antioxidant enzymes was increased along with increased myocardial nitro-oxidative stress. Bax/Bcl-2 ratio and TUNEL staining showed enhanced apoptotic signaling. Exhaustive exercise also resulted in the dysregulation of the matrix metalloproteinase system. CONCLUSIONS Excessive physical activity has an adverse effect on the heart. The observed functional impairment is associated with increased nitro-oxidative stress, enhanced apoptotic signaling and dysregulation of the matrix metalloproteinase system after exhaustive exercise.


European Journal of Heart Failure | 2017

Prevention of the development of heart failure with preserved ejection fraction by the phosphodiesterase-5A inhibitor vardenafil in rats with type 2 diabetes.

Csaba Mátyás; Balázs Tamás Németh; Attila Oláh; Marianna Török; Mihály Ruppert; Dalma Kellermayer; Bálint András Barta; Gábor Szabó; Gábor Kökény; Eszter M. Horváth; Beáta Bódi; Zoltán Papp; Béla Merkely; Tamás Radovits

Heart failure with preserved ejection fraction (HFpEF) has a great epidemiological burden. The pathophysiological role of cyclic guanosine monophosphate (cGMP) signalling has been intensively investigated in HFpEF. Elevated levels of cGMP have been shown to exert cardioprotective effects in various cardiovascular diseases, including diabetic cardiomyopathy. We investigated the effect of long‐term preventive application of the phosphodiesterase‐5A (PDE5A) inhibitor vardenafil in diabetic cardiomyopathy‐associated HFpEF.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Strain and strain rate by speckle-tracking echocardiography correlate with pressure-volume loop-derived contractility indices in a rat model of athlete's heart

Attila Kovács; Attila Oláh; Árpád Lux; Csaba Mátyás; Balázs Tamás Németh; Dalma Kellermayer; Mihály Ruppert; Marianna Török; Lilla Szabó; Anna Meltzer; Alexandra Assabiny; Ede Birtalan; Béla Merkely; Tamás Radovits

Contractile function is considered to be precisely measurable only by invasive hemodynamics. We aimed to correlate strain values measured by speckle-tracking echocardiography (STE) with sensitive contractility parameters of pressure-volume (P-V) analysis in a rat model of exercise-induced left ventricular (LV) hypertrophy. LV hypertrophy was induced in rats by swim training and was compared with untrained controls. Echocardiography was performed using a 13-MHz linear transducer to obtain LV long- and short-axis recordings for STE analysis (GE EchoPAC). Global longitudinal (GLS) and circumferential strain (GCS) and longitudinal (LSr) and circumferential systolic strain rate (CSr) were measured. LV P-V analysis was performed using a pressure-conductance microcatheter, and load-independent contractility indices [slope of the end-systolic P-V relationship (ESPVR), preload recruitable stroke work (PRSW), and maximal dP/dt-end-diastolic volume relationship (dP/dtmax-EDV)] were calculated. Trained rats had increased LV mass index (trained vs. control; 2.76 ± 0.07 vs. 2.14 ± 0.05 g/kg, P < 0.001). P-V loop-derived contractility parameters were significantly improved in the trained group (ESPVR: 3.58 ± 0.22 vs. 2.51 ± 0.11 mmHg/μl; PRSW: 131 ± 4 vs. 104 ± 2 mmHg, P < 0.01). Strain and strain rate parameters were also supernormal in trained rats (GLS: -18.8 ± 0.3 vs. -15.8 ± 0.4%; LSr: -5.0 ± 0.2 vs. -4.1 ± 0.1 Hz; GCS: -18.9 ± 0.8 vs. -14.9 ± 0.6%; CSr: -4.9 ± 0.2 vs. -3.8 ± 0.2 Hz, P < 0.01). ESPVR correlated with GLS (r = -0.71) and LSr (r = -0.53) and robustly with GCS (r = -0.83) and CSr (r = -0.75, all P < 0.05). PRSW was strongly related to GLS (r = -0.64) and LSr (r = -0.71, both P < 0.01). STE can be a feasible and useful method for animal experiments. In our rat model, strain and strain rate parameters closely reflected the improvement in intrinsic contractile function induced by exercise training.


American Journal of Physiology-heart and Circulatory Physiology | 2016

Physiological and pathological left ventricular hypertrophy of comparable degree is associated with characteristic differences of in vivo hemodynamics.

Attila Oláh; Balázs Tamás Németh; Csaba Mátyás; László Hidi; Árpád Lux; Mihály Ruppert; Dalma Kellermayer; Alex Ali Sayour; Lilla Szabó; Marianna Török; Anna Meltzer; László Gellér; Béla Merkely; Tamás Radovits

Left ventricular (LV) hypertrophy is a physiological or pathological response of LV myocardium to increased cardiac load. We aimed at investigating and comparing hemodynamic alterations in well-established rat models of physiological hypertrophy (PhyH) and pathological hypertrophy (PaH) by using LV pressure-volume (P-V) analysis. PhyH and PaH were induced in rats by swim training and by abdominal aortic banding, respectively. Morphology of the heart was investigated by echocardiography. Characterization of cardiac function was completed by LV P-V analysis. In addition, histological and molecular biological measurements were performed. Echocardiography revealed myocardial hypertrophy of similar degree in both models, which was confirmed by post-mortem heart weight data. In aortic-banded rats we detected subendocardial fibrosis. Reactivation of fetal gene program could be observed only in the PaH model. PhyH was associated with increased stroke volume, whereas unaltered stroke volume was detected in PaH along with markedly elevated end-systolic pressure values. Sensitive indexes of LV contractility were increased in both models, in parallel with the degree of hypertrophy. Active relaxation was ameliorated in athletes heart, whereas it showed marked impairment in PaH. Mechanical efficiency and ventriculo-arterial coupling were improved in PhyH, whereas they remained unchanged in PaH. Myocardial gene expression of mitochondrial regulators showed marked differences between PaH and PhyH. We provided the first comparative hemodynamic characterization of PhyH and PaH in relevant rodent models. Increased LV contractility could be observed in both types of LV hypertrophy; characteristic distinction was detected in diastolic function (active relaxation) and mechanoenergetics (mechanical efficiency), which might be explained by mitochondrial differences.


American Journal of Physiology-heart and Circulatory Physiology | 2016

Myocardial reverse remodeling after pressure unloading is associated with maintained cardiac mechanoenergetics in a rat model of left ventricular hypertrophy

Mihály Ruppert; Sevil Korkmaz-Icöz; Shiliang Li; Balázs Tamás Németh; Péter Hegedűs; Paige Brlecic; Csaba Mátyás; Markus Zorn; Béla Merkely; Matthias Karck; Tamás Radovits; Gábor Szabó

Pressure unloading represents the only effective therapy in increased afterload-induced left ventricular hypertrophy (LVH) as it leads to myocardial reverse remodeling (reduction of increased left ventricular mass, attenuated myocardial fibrosis) and preserved cardiac function. However, the effect of myocardial reverse remodeling on cardiac mechanoenergetics has not been elucidated. Therefore, we aimed to provide a detailed hemodynamic characterization in a rat model of LVH undergoing pressure unloading. Pressure overload was induced in Sprague-Dawley rats by abdominal aortic banding for 6 (AB 6th wk) or 12 wk (AB 12th wk). Sham-operated animals served as controls. Aortic debanding procedure was performed after the 6th experimental week (debanded 12th wk) to investigate the regression of LVH. Pressure unloading resulted in significant reduction of LVH (heart weight-to-tibial length ratio: 0.38 ± 0.01 vs. 0.58 ± 0.02 g/mm, cardiomyocyte diameter: 18.3 ± 0.1 vs. 24.1 ± 0.8 μm debanded 12th wk vs. AB 12th wk, P < 0.05), attenuated the extracellular matrix remodeling (Massons score: 1.37 ± 0.13 vs. 1.73 ± 0.10, debanded 12th wk vs. AB 12th wk, P < 0.05), provided protection against the diastolic dysfunction, and reversed the maladaptive contractility augmentation (slope of end-systolic pressure-volume relationship: 1.39 ± 0.24 vs. 2.04 ± 0.09 mmHg/μl, P < 0.05 debanded 12th wk vs. AB 6th wk, P < 0.05). In addition, myocardial reverse remodeling was also associated with preserved ventriculoarterial coupling and increased mechanical efficiency (50.6 ± 2.8 vs. 38.9 ± 2.5%, debanded 12th wk vs. AB 12th wk, P < 0.05), indicating a complete functional and mechanoenergetic recovery. According to our best knowledge, this is the first study demonstrating that the regression of LVH is accompanied by maintained cardiac mechanoenergetics.


Experimental Diabetes Research | 2015

Mild Type 2 Diabetes Mellitus Reduces the Susceptibility of the Heart to Ischemia/Reperfusion Injury: Identification of Underlying Gene Expression Changes

Sevil Korkmaz-Icöz; Alice Lehner; Shiliang Li; Adrian Vater; Tamás Radovits; Péter Hegedűs; Mihály Ruppert; Paige Brlecic; Markus Zorn; Matthias Karck; Gábor Szabó

Despite clinical studies indicating that diabetic hearts are more sensitive to ischemia/reperfusion injury, experimental data is contradictory. Although mild diabetes prior to ischemia/reperfusion may induce a myocardial adaptation, further research is still needed. Nondiabetic Wistar (W) and type 2 diabetic Goto-Kakizaki (GK) rats (16-week-old) underwent 45 min occlusion of the left anterior descending coronary artery and 24 h reperfusion. The plasma glucose level was significantly higher in diabetic rats compared to the nondiabetics. Diabetes mellitus was associated with ventricular hypertrophy and increased interstitial fibrosis. Inducing myocardial infarction increased the glucose levels in diabetic compared to nondiabetic rats. Furthermore, the infarct size was smaller in GK rats than in the control group. Systolic and diastolic functions were impaired in W + MI and did not reach statistical significance in GK + MI animals compared to the corresponding controls. Among the 125 genes surveyed, 35 genes showed a significant change in expression in GK + MI compared to W + MI rats. Short-term diabetes promotes compensatory mechanisms that may provide cardioprotection against ischemia/reperfusion injury, at least in part, by increased antioxidants and the upregulation of the prosurvival PI3K/Akt pathway, by the downregulation of apoptotic genes, proinflammatory cytokine TNF-α, profibrogenic TGF-β, and hypertrophic marker α-actin-1.


Journal of Physiological Sciences | 2016

Administration of zinc complex of acetylsalicylic acid after the onset of myocardial injury protects the heart by upregulation of antioxidant enzymes

Sevil Korkmaz-Icöz; Ayhan Atmanli; Tamás Radovits; Shiliang Li; Peter Hegedüs; Mihály Ruppert; Paige Brlecic; Yutaka Yoshikawa; Hiroyuki Yasui; Matthias Karck; Gábor Szabó

We recently demonstrated that the pre-treatment of rats with zinc and acetylsalicylic acid complex in the form of bis(aspirinato)zinc(II) [Zn(ASA)2] is superior to acetylsalicylic acid in protecting the heart from acute myocardial ischemia. Herein, we hypothesized that Zn(ASA)2 treatment after the onset of an acute myocardial injury could protect the heart. The rats were treated with a vehicle or Zn(ASA)2 after an isoproterenol injection. Isoproterenol-induced cardiac damage [inflammatory infiltration into myocardial tissue, DNA-strand breakage evidenced by TUNEL-assay, increased 11-dehydro thromboxane (TX)B2-levels, elevated ST-segment, widened QRS complex and prolonged QT-interval] was prevented by the Zn(ASA)2 treatment. In isoproterenol-treated rats, load-independent left ventricular contractility parameters were significantly improved after Zn(ASA)2. Furthermore, Zn(ASA)2 significantly increased the myocardial mRNA-expression of superoxide dismutase-1, glutathione peroxidase-4 and decreased the level of Na+/K+/ATPase. Postconditioning with Zn(ASA)2 protects the heart from acute myocardial ischemia. Its mechanisms of action might involve inhibition of pro-inflammatory prostanoids and upregulation of antioxidant enzymes.


Scientific Reports | 2016

Cinaciguat prevents the development of pathologic hypertrophy in a rat model of left ventricular pressure overload.

Balázs Tamás Németh; Csaba Mátyás; Attila Oláh; Árpád Lux; László Hidi; Mihály Ruppert; Dalma Kellermayer; Gábor Kökény; Gábor Szabó; Béla Merkely; Tamás Radovits

Pathologic myocardial hypertrophy develops when the heart is chronically pressure-overloaded. Elevated intracellular cGMP-levels have been reported to prevent the development of pathologic myocardial hypertrophy, therefore we investigated the effects of chronic activation of the cGMP producing enzyme, soluble guanylate cyclase by Cinaciguat in a rat model of pressure overload-induced cardiac hypertrophy. Abdominal aortic banding (AAB) was used to evoke pressure overload-induced cardiac hypertrophy in male Wistar rats. Sham operated animals served as controls. Experimental and control groups were treated with 10 mg/kg/day Cinaciguat (Cin) or placebo (Co) p.o. for six weeks, respectively. Pathologic myocardial hypertrophy was present in the AABCo group following 6 weeks of pressure overload of the heart, evidenced by increased relative heart weight, average cardiomyocyte diameter, collagen content and apoptosis. Cinaciguat did not significantly alter blood pressure, but effectively attenuated all features of pathologic myocardial hypertrophy, and normalized functional changes, such as the increase in contractility following AAB. Our results demonstrate that chronic enhancement of cGMP signalling by pharmacological activation of sGC might be a novel therapeutic approach in the prevention of pathologic myocardial hypertrophy.


American Journal of Physiology-heart and Circulatory Physiology | 2016

Left ventricular pressure-volume measurements and myocardial gene expression profile in type-2 diabetic Goto-Kakizaki rats

Sevil Korkmaz-Icöz; Alice Lehner; Shiliang Li; Adrian Vater; Tamás Radovits; Maik Brune; Mihály Ruppert; Xiaoxin Sun; Paige Brlecic; Markus Zorn; Matthias Karck; Gábor Szabó

The Goto-Kakizaki (GK) rat, a non-obese model of type 2 diabetes mellitus (T2DM), was generated by the selective inbreeding of glucose-intolerant Wistar rats. This is a convenient model for studying diabetes-induced cardiomyopathy independently from the effects of the metabolic syndrome. We investigated the myocardial functional and structural changes and underlying molecular pathomechanisms of short-term and mild T2DM. The presence of DM was confirmed by an impaired oral glucose tolerance in the GK rats compared with the age-matched nondiabetic Wistar rats. Data from cardiac catheterization showed that in GK rats, although the systolic indexes were not altered, the diastolic stiffness was increased compared with nondiabetics (end-diastolic-pressure-volume-relationship: 0.12 ± 0.04 vs. 0.05 ± 0.01 mmHg/μl, P < 0.05). Additionally, DM was associated with left-ventricular hypertrophy and histological evidence of increased myocardial fibrosis. The plasma pro-B-type natriuretic peptide, the cardiac troponin-T, glucose, and the urinary glucose concentrations were significantly higher in GK rats. Among the 125 genes surveyed using PCR arrays, DM significantly altered the expression of five genes [upregulation of natriuretic peptide precursor-A and connective tissue growth factor, downregulation of c-reactive protein, interleukin-1β, and tumor necrosis factor (TNF)-α mRNA-level]. Of the altered genes, which were evaluated by Western blot, only TNF-α protein expression was significantly decreased. The ECG recordings revealed no significant differences. In conclusion, while systolic dysfunction, myocardial inflammation, and abnormal electrical conduction remain absent, short-term and mild T2DM induce the alteration of cardiac TNF-α at both the mRNA and protein levels. Further assessments are required to reveal if TNF-α plays a role in the early stage of diabetic cardiomyopathy development.


British Journal of Pharmacology | 2018

Olaparib protects cardiomyocytes against oxidative stress and improves graft contractility during the early phase after heart transplantation in rats

Sevil Korkmaz-Icöz; Bartosz Szczesny; Michela Marcatti; Shiliang Li; Mihály Ruppert; Felix Lasitschka; Sivakkanan Loganathan; Csaba Szabó; Gábor Szabó

Olaparib, rucaparib and niraparib, potent inhibitors of poly(ADP‐ribose) polymerase (PARP) are approved as anti‐cancer drugs in humans. Considering the previously demonstrated role of PARP in various forms of acute and chronic myocardial injury, we tested the effects of olaparib in in‐vitro models of oxidative stress in cardiomyocytes, and in an in vivo model of cardiac transplantation.

Collaboration


Dive into the Mihály Ruppert's collaboration.

Top Co-Authors

Avatar

Tamás Radovits

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Béla Merkely

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge