Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Balu A. Chopade is active.

Publication


Featured researches published by Balu A. Chopade.


Biotechnology Advances | 2010

Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms

Surekha K. Satpute; Ibrahim M. Banat; Prashant K. Dhakephalkar; Arun Banpurkar; Balu A. Chopade

Marine biosphere offers wealthy flora and fauna, which represents a vast natural resource of imperative functional commercial grade products. Among the various bioactive compounds, biosurfactant (BS)/bioemulsifiers (BE) are attracting major interest and attention due to their structural and functional diversity. The versatile properties of surface active molecules find numerous applications in various industries. Marine microorganisms such as Acinetobacter, Arthrobacter, Pseudomonas, Halomonas, Myroides, Corynebacteria, Bacillus, Alteromonas sp. have been studied for production of BS/BE and exopolysaccharides (EPS). Due to the enormity of marine biosphere, most of the marine microbial world remains unexplored. The discovery of potent BS/BE producing marine microorganism would enhance the use of environmental biodegradable surface active molecule and hopefully reduce total dependence or number of new application oriented towards the chemical synthetic surfactant industry. Our present review gives comprehensive information on BS/BE which has been reported to be produced by marine microorganisms and their possible potential future applications.


International Journal of Nanomedicine | 2012

Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents.

Sougata Ghosh; Sumersing Patil; Mehul Ahire; Rohini Kitture; S. N. Kale; Karishma R. Pardesi; Swaranjit S Cameotra; Jayesh R. Bellare; Dilip D. Dhavale; Amit M. Jabgunde; Balu A. Chopade

Background Development of an environmentally benign process for the synthesis of silver nanomaterials is an important aspect of current nanotechnology research. Among the 600 species of the genus Dioscorea, Dioscorea bulbifera has profound therapeutic applications due to its unique phytochemistry. In this paper, we report on the rapid synthesis of silver nanoparticles by reduction of aqueous Ag+ ions using D. bulbifera tuber extract. Methods and results Phytochemical analysis revealed that D. bulbifera tuber extract is rich in flavonoid, phenolics, reducing sugars, starch, diosgenin, ascorbic acid, and citric acid. The biosynthesis process was quite fast, and silver nanoparticles were formed within 5 hours. Ultraviolet-visible absorption spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, and x-ray diffraction confirmed reduction of the Ag+ ions. Varied morphology of the bioreduced silver nanoparticles included spheres, triangles, and hexagons. Optimization studies revealed that the maximum rate of synthesis could be achieved with 0.7 mM AgNO3 solution at 50°C in 5 hours. The resulting silver nanoparticles were found to possess potent antibacterial activity against both Gram-negative and Gram-positive bacteria. Beta-lactam (piperacillin) and macrolide (eryth-romycin) antibiotics showed a 3.6-fold and 3-fold increase, respectively, in combination with silver nanoparticles selectively against multidrug-resistant Acinetobacter baumannii. Notable synergy was seen between silver nanoparticles and chloramphenicol or vancomycin against Pseudomonas aeruginosa, and was supported by a 4.9-fold and 4.2-fold increase in zone diameter, respectively. Similarly, we found a maximum 11.8-fold increase in zone diameter of streptomycin when combined with silver nanoparticles against E. coli, providing strong evidence for the synergistic action of a combination of antibiotics and silver nanoparticles. Conclusion This is the first report on the synthesis of silver nanoparticles using D. bulbifera tuber extract followed by an estimation of its synergistic potential for enhancement of the antibacterial activity of broad spectrum antimicrobial agents.


Critical Reviews in Biotechnology | 2010

Methods for investigating biosurfactants and bioemulsifiers: a review

Surekha K. Satpute; Arun Banpurkar; Prashant K. Dhakephalkar; Ibrahim M. Banat; Balu A. Chopade

Microorganisms produce biosurfactant (BS)/bioemulsifier (BE) with wide structural and functional diversity which consequently results in the adoption of different techniques to investigate these diverse amphiphilic molecules. This review aims to compile information on different microbial screening methods, surface active products extraction procedures, and analytical terminologies used in this field. Different methods for screening microbial culture broth or cell biomass for surface active compounds production are also presented and their possible advantages and disadvantages highlighted. In addition, the most common methods for purification, detection, and structure determination for a wide range of BS and BE are introduced. Simple techniques such as precipitation using acetone, ammonium sulphate, solvent extraction, ultrafiltration, ion exchange, dialysis, ultrafiltration, lyophilization, isoelectric focusing (IEF), and thin layer chromatography (TLC) are described. Other more elaborate techniques including high pressure liquid chromatography (HPLC), infra red (IR), gas chromatography-mass spectroscopy (GC-MS), nuclear magnetic resonance (NMR), and fast atom bombardment mass spectroscopy (FAB-MS), protein digestion and amino acid sequencing are also elucidated. Various experimental strategies including static light scattering and hydrodynamic characterization for micelles have been discussed. A combination of various analytical methods are often essential in this area of research and a numbers of trials and errors to isolate, purify and characterize various surface active agents are required. This review introduces the various methodologies that are indispensable for studying biosurfactants and bioemulsifiers.


Biometals | 1994

Plasmid mediated silver resistance in Acinetobacter baumannii

Lalitagauri Milind Deshpande; Balu A. Chopade

Acinetobacter baumannii BL88, an environmental isolate, was resistant to 13 metals and 10 antibiotics. Plumbagin cured resistance to silver, cadmium, antimony, streptomycin and ampicillin at varying frequencies. However, only silver resistance transferred (1 × 10−6 recepient−1) to Escherichia coli K12 during conjugation. Correspondingly there was transfer of a 54 kb plasmid (pUPI199) from A. baumannii BL88. The plasmid transformed E. coli DH5α cells at a frequency of 1 × 10−8 recepient−1. The growth rate of E. coli DH5; (pUPI199) was slower as compared with E. coli DH5α. Plasmid pUPI199 was 76 and 9.6% stable in the host A. baumannii BL88 in the presence and absence of selection pressure, respectively. A. baumannii BL88 was found to accumulate and retain silver whereas E. coli DH5α (pUPI199) effluxed 63% of the accumulated silver ions.


International Journal of Nanomedicine | 2013

Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics.

Richa Singh; Priyanka Wagh; Sweety A. Wadhwani; Sharvari Gaidhani; Avinash Kumbhar; Jayesh R. Bellare; Balu A. Chopade

Background The development of nontoxic methods of synthesizing nanoparticles is a major step in nanotechnology to allow their application in nanomedicine. The present study aims to biosynthesize silver nanoparticles (AgNPs) using a cell-free extract of Acinetobacter spp. and evaluate their antibacterial activity. Methods Eighteen strains of Acinetobacter were screened for AgNP synthesis. AgNPs were characterized using various techniques. Reaction parameters were optimized, and their effect on the morphology of AgNPs was studied. The synergistic potential of AgNPs on 14 antibiotics against seven pathogens was determined by disc-diffusion, broth-microdilution, and minimum bactericidal concentration assays. The efficacy of AgNPs was evaluated as per the minimum inhibitory concentration (MIC) breakpoints of the Clinical and Laboratory Standards Institute (CLSI) guidelines. Results Only A. calcoaceticus LRVP54 produced AgNPs within 24 hours. Monodisperse spherical nanoparticles of 8–12 nm were obtained with 0.7 mM silver nitrate at 70°C. During optimization, a blue-shift in ultraviolet-visible spectra was seen. X-ray diffraction data and lattice fringes (d =0.23 nm) observed under high-resolution transmission electron microscope confirmed the crystallinity of AgNPs. These AgNPs were found to be more effective against Gram-negative compared with Gram-positive microorganisms. Overall, AgNPs showed the highest synergy with vancomycin in the disc-diffusion assay. For Enterobacter aerogenes, a 3.8-fold increase in inhibition zone area was observed after the addition of AgNPs with vancomycin. Reduction in MIC and minimum bactericidal concentration was observed on exposure of AgNPs with antibiotics. Interestingly, multidrug-resistant A. baumannii was highly sensitized in the presence of AgNPs and became susceptible to antibiotics except cephalosporins. Similarly, the vancomycin-resistant strain of Streptococcus mutans was also found to be susceptible to antibiotic treatment when AgNPs were added. These biogenic AgNPs showed significant synergistic activity on the β-lactam class of antibiotics. Conclusion This is the first report of synthesis of AgNPs using A. calcoaceticus LRVP54 and their significant synergistic activity with antibiotics resulting in increased susceptibility of multidrug-resistant bacteria evaluated as per MIC breakpoints of the CLSI standard.


Journal of Nanobiotechnology | 2012

Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential.

Sougata Ghosh; Sumersing Patil; Mehul Ahire; Rohini Kitture; Deepanjali D. Gurav; Amit M. Jabgunde; S. N. Kale; Karishma R. Pardesi; Vaishali S. Shinde; Jayesh R. Bellare; Dilip D. Dhavale; Balu A. Chopade

BackgroundNovel approaches for synthesis of gold nanoparticles (AuNPs) are of utmost importance owing to its immense applications in diverse fields including catalysis, optics, medical diagnostics and therapeutics. We report on synthesis of AuNPs using Gnidia glauca flower extract (GGFE), its detailed characterization and evaluation of its chemocatalytic potential.ResultsSynthesis of AuNPs using GGFE was monitored by UV-Vis spectroscopy and was found to be rapid that completed within 20 min. The concentration of chloroauric acid and temperature was optimized to be 0.7 mM and 50°C respectively. Bioreduced nanoparticles varied in morphology from nanotriangles to nanohexagons majority being spherical. AuNPs were characterized employing transmission electron microscopy, high resolution transmission electron microscopy. Confirmation of elemental gold was carried out by elemental mapping in scanning transmission electron microscopic mode, energy dispersive spectroscopy and X-ray diffraction studies. Spherical particles of size ~10 nm were found in majority. However, particles of larger dimensions were in range between 50-150 nm. The bioreduced AuNPs exhibited remarkable catalytic properties in a reduction reaction of 4-nitrophenol to 4-aminophenol by NaBH4 in aqueous phase.ConclusionThe elaborate experimental evidences support that GGFE can provide an environmentally benign rapid route for synthesis of AuNPs that can be applied for various purposes. Biogenic AuNPs synthesized using GGFE exhibited excellent chemocatalytic potential.


Biometals | 1994

High levels of multiple metal resistance and its correlation to antibiotic resistance in environmental isolates of Acinetobacter.

Prashant K. Dhakephalkar; Balu A. Chopade

Forty strains of Acinetobacter were isolated from different environmental sources. All the strains were classified into four genospecies, i.e. A. baumannii (33 isolates), A. calcoaceticus (three isolates), A. junii (three isolates) and A. genospecies3 (one isolate). Susceptibility of these 40 strains to salts of 20 heavy metals and 18 antibiotics was tested by the agar dilution method. All environmental isolates of Acinetobacter were resistant to multiple metal ions (minimum 13 metal ions) while all but one of the strains were resistant to multiple antibiotics (minimum four antibiotics). The maximum number of strains were found to be sensitive to mercury (60% strains) while all strains were resistant to copper, lead, boron and tungsten even at 10 mm concentration. Salts of these four metal ions may be added to the growth medium to facilitate selective isolation of Acinetobacter. Rifampicin and nalidixic acid were the most toxic antibiotics, inhibiting 94.5 and 89.5% of the acinetobacters, respectively. A. genospecies3 was found to be the most resistant species, tolerating high concentrations of all the 20 metal ions and also to a greater number of antibiotics than any other species of Acinetobacter tested. An inhibitory concentration (10 mm) of Ni2+ and Zn2+ was observed to inhibit the growth of all of the clinical isolates but allowed the growth of the environmental isolates, facilitating the differentiation between pathogenic and non-pathogenic acinetobacters.


Applied Microbiology and Biotechnology | 2015

Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications

Richa Singh; Utkarsha U. Shedbalkar; Sweety A. Wadhwani; Balu A. Chopade

Silver nanoparticles (AgNPs) have received tremendous attention due to their significant antimicrobial properties. Large numbers of reports are available on the physical, chemical, and biological syntheses of colloidal AgNPs. Since there is a great need to develop ecofriendly and sustainable methods, biological systems like bacteria, fungi, and plants are being employed to synthesize these nanoparticles. The present review focuses specifically on bacteria-mediated synthesis of AgNPs, its mechanism, and applications. Bacterial synthesis of extra- and intracellular AgNPs has been reported using biomass, supernatant, cell-free extract, and derived components. The extracellular mode of synthesis is preferred over the intracellular mode owing to easy recovery of nanoparticles. Silver-resistant genes, c-type cytochromes, peptides, cellular enzymes like nitrate reductase, and reducing cofactors play significant roles in AgNP synthesis in bacteria. Organic materials released by bacteria act as natural capping and stabilizing agents for AgNPs, thereby preventing their aggregation and providing stability for a longer time. Regulation over reaction conditions has been suggested to control the morphology, dispersion, and yield of nanoparticles. Bacterial AgNPs have anticancer and antioxidant properties. Moreover, the antimicrobial activity of AgNPs in combination with antibiotics signifies their importance in combating the multidrug-resistant pathogenic microorganisms. Multiple microbicidal mechanisms exhibited by AgNPs, depending upon their size and shape, make them very promising as novel nanoantibiotics.


Advances in Colloid and Interface Science | 2014

Microbial synthesis of gold nanoparticles: Current status and future prospects

Utkarsha U. Shedbalkar; Richa Singh; Sweety A. Wadhwani; Sharvari Gaidhani; Balu A. Chopade

Gold nanoparticles have been employed in biomedicine since the last decade because of their unique optical, electrical and photothermal properties. Present review discusses the microbial synthesis, properties and biomedical applications of gold nanoparticles. Different microbial synthesis strategies used so far for obtaining better yield and stability have been described. It also includes different methods used for the characterization and analysis of gold nanoparticles, viz. UV-visible spectroscopy, Fourier transform infrared spectroscopy, X ray diffraction spectroscopy, scanning electron microscopy, ransmission electron microscopy, atomic force microscopy, electron dispersive X ray, X ray photoelectron spectroscopy and cyclic voltametry. The different mechanisms involved in microbial synthesis of gold nanoparticles have been discussed. The information related to applications of microbially synthesized gold nanoparticles and patents on microbial synthesis of gold nanoparticles has been summarized.


Fems Immunology and Medical Microbiology | 2011

Biofilm formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters

Nadia Kazemi Pour; Devendra H. Dusane; Prashant K. Dhakephalkar; Farokh Rokhbakhsh Zamin; Smita Zinjarde; Balu A. Chopade

Fifty Acinetobacter isolates were obtained from urinary tract infections and urinary catheter samples. Analytical profile index assays identified 47 isolates as Acinetobacter baumannii and three as Acinetobacter lwoffii. Six A. baumannii isolates (A1-A6) displayed hydrophobicity indices >70%. Twenty isolates exhibited lectin activity. Biofilm formation by these isolates was compared with those with low hydrophobicity index values (A45-A50). Biofilms on different surfaces were confirmed by light microscopy, epifluorescence microscopy and by obtaining scanning electron microscope images. Biofilm production was maximal at 30 °C, pH 7.0 in a medium with 5.0 g L(-1) NaCl, and its efficiency was reduced on urinary catheter surfaces at sub-minimum inhibitory concentration concentrations of colistin. Plasmid-mediated antibiotic resistance was observed in selected isolates of A. baumannii and experiments of conjugation and transformation showed the occurrence of gene transfer. Plasmid curing was used to examine the function of plasmids. Five plasmids of A. baumannii A3 were cured but no differences were observed between wild-type and plasmid-cured strains with respect to the biofilm formation capabilities. The prevalence of A. baumannii strains with biofilm mode of growth could explain their ability to persist in clinical environments and their role in device-related infections.

Collaboration


Dive into the Balu A. Chopade's collaboration.

Top Co-Authors

Avatar

Sougata Ghosh

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Dilip D. Dhavale

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Karishma R. Pardesi

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Richa Singh

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Rohini Kitture

Defence Institute of Advanced Technology

View shared research outputs
Top Co-Authors

Avatar

Jayesh R. Bellare

Indian Institute of Technology Bombay

View shared research outputs
Top Co-Authors

Avatar

Sweety A. Wadhwani

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Utkarsha U. Shedbalkar

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

S. N. Kale

Defence Institute of Advanced Technology

View shared research outputs
Top Co-Authors

Avatar

Piyush More

Savitribai Phule Pune University

View shared research outputs
Researchain Logo
Decentralizing Knowledge