Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karishma R. Pardesi is active.

Publication


Featured researches published by Karishma R. Pardesi.


International Journal of Nanomedicine | 2012

Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents.

Sougata Ghosh; Sumersing Patil; Mehul Ahire; Rohini Kitture; S. N. Kale; Karishma R. Pardesi; Swaranjit S Cameotra; Jayesh R. Bellare; Dilip D. Dhavale; Amit M. Jabgunde; Balu A. Chopade

Background Development of an environmentally benign process for the synthesis of silver nanomaterials is an important aspect of current nanotechnology research. Among the 600 species of the genus Dioscorea, Dioscorea bulbifera has profound therapeutic applications due to its unique phytochemistry. In this paper, we report on the rapid synthesis of silver nanoparticles by reduction of aqueous Ag+ ions using D. bulbifera tuber extract. Methods and results Phytochemical analysis revealed that D. bulbifera tuber extract is rich in flavonoid, phenolics, reducing sugars, starch, diosgenin, ascorbic acid, and citric acid. The biosynthesis process was quite fast, and silver nanoparticles were formed within 5 hours. Ultraviolet-visible absorption spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, and x-ray diffraction confirmed reduction of the Ag+ ions. Varied morphology of the bioreduced silver nanoparticles included spheres, triangles, and hexagons. Optimization studies revealed that the maximum rate of synthesis could be achieved with 0.7 mM AgNO3 solution at 50°C in 5 hours. The resulting silver nanoparticles were found to possess potent antibacterial activity against both Gram-negative and Gram-positive bacteria. Beta-lactam (piperacillin) and macrolide (eryth-romycin) antibiotics showed a 3.6-fold and 3-fold increase, respectively, in combination with silver nanoparticles selectively against multidrug-resistant Acinetobacter baumannii. Notable synergy was seen between silver nanoparticles and chloramphenicol or vancomycin against Pseudomonas aeruginosa, and was supported by a 4.9-fold and 4.2-fold increase in zone diameter, respectively. Similarly, we found a maximum 11.8-fold increase in zone diameter of streptomycin when combined with silver nanoparticles against E. coli, providing strong evidence for the synergistic action of a combination of antibiotics and silver nanoparticles. Conclusion This is the first report on the synthesis of silver nanoparticles using D. bulbifera tuber extract followed by an estimation of its synergistic potential for enhancement of the antibacterial activity of broad spectrum antimicrobial agents.


Journal of Nanobiotechnology | 2012

Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential.

Sougata Ghosh; Sumersing Patil; Mehul Ahire; Rohini Kitture; Deepanjali D. Gurav; Amit M. Jabgunde; S. N. Kale; Karishma R. Pardesi; Vaishali S. Shinde; Jayesh R. Bellare; Dilip D. Dhavale; Balu A. Chopade

BackgroundNovel approaches for synthesis of gold nanoparticles (AuNPs) are of utmost importance owing to its immense applications in diverse fields including catalysis, optics, medical diagnostics and therapeutics. We report on synthesis of AuNPs using Gnidia glauca flower extract (GGFE), its detailed characterization and evaluation of its chemocatalytic potential.ResultsSynthesis of AuNPs using GGFE was monitored by UV-Vis spectroscopy and was found to be rapid that completed within 20 min. The concentration of chloroauric acid and temperature was optimized to be 0.7 mM and 50°C respectively. Bioreduced nanoparticles varied in morphology from nanotriangles to nanohexagons majority being spherical. AuNPs were characterized employing transmission electron microscopy, high resolution transmission electron microscopy. Confirmation of elemental gold was carried out by elemental mapping in scanning transmission electron microscopic mode, energy dispersive spectroscopy and X-ray diffraction studies. Spherical particles of size ~10 nm were found in majority. However, particles of larger dimensions were in range between 50-150 nm. The bioreduced AuNPs exhibited remarkable catalytic properties in a reduction reaction of 4-nitrophenol to 4-aminophenol by NaBH4 in aqueous phase.ConclusionThe elaborate experimental evidences support that GGFE can provide an environmentally benign rapid route for synthesis of AuNPs that can be applied for various purposes. Biogenic AuNPs synthesized using GGFE exhibited excellent chemocatalytic potential.


Evidence-based Complementary and Alternative Medicine | 2012

Antidiabetic Activity of Gnidia glauca and Dioscorea bulbifera: Potent Amylase and Glucosidase Inhibitors

Sougata Ghosh; Mehul Ahire; Sumersing Patil; Amit M. Jabgunde; Meenakshi Bhat Dusane; Bimba N. Joshi; Karishma R. Pardesi; Sanjay M Jachak; Dilip D. Dhavale; Balu A. Chopade

Diabetes is a metabolic disorder affecting about 220 million people worldwide. One of the most critical complications of diabetes is post-prandial hyper-glycemia (PPHG). Glucosidase inhibitor and α-amylase inhibitors are class of compounds that help in managing PPHG. Low-cost herbal treatment is recommended due to their lesser side effect for treatment of diabetes. Two plants with significant traditional therapeutic potential, namely, Gnidia glauca and Dioscorea bulbifera, were tested for their efficiency to inhibit α-amylase and α-glucosidase. Stem, leaf, and flower of G. glauca and bulb of D. bulbifera were sequentially extracted with petroleum ether, ethyl acetate, and methanol as well as separately with 70% ethanol. Petroleum ether extract of flower of G. glauca was found to inhibit α-amylase significantly (78.56%). Extracts were further tested against crude murine pancreatic, small intestinal, and liver glucosidase enzyme which revealed excellent inhibitory properties. α-glucosidase inhibition provided a strong in vitro evidence for confirmation of both G. glauca and D. bulbifera as excellent antidiabetic remedy. This is the first report of its kind that provides a strong biochemical basis for management of type II diabetes using G. glauca and D. bulbifera. These results provide intense rationale for further in vivo and clinical study.


Journal of Nanomaterials | 2011

Synthesis of gold nanoanisotrops using dioscorea bulbifera tuber extract

Sougata Ghosh; Sumersing Patil; Mehul Ahire; Rohini Kitture; Amit M. Jabgunde; S. N. Kale; Karishma R. Pardesi; Jayesh R. Bellare; Dilip D. Dhavale; Balu A. Chopade

Biosynthesis of metal nanoparticles employing plant extracts and thereby development of an environmentally benign process is an important branch of nanotechnology. Here, the synthesis of gold nanoparticles using Dioscorea bulbifera tuber extract (DBTE) as the reducing agent is reported. Field emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD), and UV-visible absorption spectroscopy confirmed the reduction of gold ions to AuNPs. The anisotropic nanoparticles consist of a mixture of gold nanotriangles, nanoprisms, nanotrapezoid, and spheres. The kinetics of particle formation was time dependent and was enhanced by the increase of temperature from 6° to 50°, the optimum being 50°. The optimum concentration of chloroauric acid was found to be 1mM. Complete reduction of the metal ions within 5 hours by DBTE highlights the development of a novel ecofriendly route of biological synthesis of gold nanoparticles. This is the first paper on synthesis of gold nanoparticles using DBTE.


The Scientific World Journal | 2012

Characterization of eDNA from the Clinical Strain Acinetobacter baumannii AIIMS 7 and Its Role in Biofilm Formation

Praveen K. Sahu; Pavithra S. Iyer; Amrita M. Oak; Karishma R. Pardesi; Balu A. Chopade

Release of extracellular DNA (eDNA) was observed during in vitro growth of a clinical strain of Acinetobacter baumannii. Membrane vesicles (MV) of varying diameter (20–200 nm) containing DNA were found to be released by transmission electron microscopy (TEM) and atomic force microscopy (AFM). An assessment of the characteristics of the eDNA with respect to size, digestion pattern by DNase I/restriction enzymes, and PCR-sequencing, indicates a high similarity with genomic DNA. Role of eDNA in static biofilm formed on polystyrene surface was evaluated by biofilm augmentation assay using eDNA available in different preparations, for example, whole cell lysate, cell-free supernatant, MV suspension, and purified eDNA. Biofilm augmentation was seen up to 224.64%, whereas biofilm inhibition was 59.41% after DNase I treatment: confirming that eDNA facilitates biofilm formation in A. baumannii. This is the first paper elucidating the characteristics and role of eDNA in A. baumannii biofilm, which may provide new insights into its pathogenesis.


Indian Journal of Medical Microbiology | 2007

Species distribution and physiological characterization of Acinetobacter genospecies from healthy human skin of tribal population in India.

Supriya Yavankar; Karishma R. Pardesi; Balu A. Chopade

BACKGROUND Various reports on distribution of Acinetobacter spp. from healthy human skin restricted to urban population. However, no such data is available from healthy human skin of tribal population not exposed to modern antibiotics during their life time. PURPOSE Isolation, biotyping, distribution and physiological characterisation of Acinetobacter spp. from healthy human skin of tribal population. METHODS Tribal population of Toranmal area of Satpuda Ranges, Maharashtra, India were sampled for ten body sites. Tentative Acinetobacter isolates were confirmed to the genus level by chromosomal DNA transformation assay and to species level using Bouvet and Grimont system. Novel physiological characteristics like pH, temperature and salt tolerance were studied. All strains were screened for production of various enzymes. RESULTS One hundred and eighteen strains were isolated, which belonged to nine Acinetobacter genospecies. A. haemolyticus was most abundant followed by A. calcoaceticus and A. genospecies 1-3. Higher percentage of Acinetobacter was recovered from skin of nose, Pawara tribe and female volunteers. They showed wide variation in temperature, salt and pH tolerance. Most of the strains could produce enzymes viz, lipase, esterase, urease and amylase. CONCLUSIONS Acinetobacter spp. belonging to nine genospecies were obtained in the present study. Physiological characteristics including high salt, temperature and acidic pH tolerance were helpful to differentiate between the commensal and pathogenic species of Acinetobacter genus.


PLOS ONE | 2013

Phytochemical Analysis and Free Radical Scavenging Activity of Medicinal Plants Gnidia glauca and Dioscorea bulbifera

Sougata Ghosh; Abhishek Derle; Mehul Ahire; Piyush More; Soham Jagtap; Suvarna D. Phadatare; Ashwini Patil; Amit M. Jabgunde; Geeta Sharma; Vaishali S. Shinde; Karishma R. Pardesi; Dilip D. Dhavale; Balu A. Chopade

Gnidia glauca and Dioscorea bulbifera are traditional medicinal plants that can be considered as sources of natural antioxidants. Herein we report the phytochemical analysis and free radical scavenging activity of their sequential extracts. Phenolic and flavonoid content were determined. Scavenging activity was checked against pulse radiolysis generated ABTS•+ and OH radical, in addition to DPPH, superoxide and hydroxyl radicals by biochemical methods followed by principal component analysis. G. glauca leaf extracts were rich in phenolic and flavonoid content. Ethyl acetate extract of D. bulbifera bulbs and methanol extract of G. glauca stem exhibited excellent scavenging of pulse radiolysis generated ABTS•+ radical with a second order rate constant of 2.33×106 and 1.72×106, respectively. Similarly, methanol extract of G. glauca flower and ethyl acetate extract of D. bulbifera bulb with second order rate constants of 4.48×106 and 4.46×106 were found to be potent scavengers of pulse radiolysis generated OH radical. G. glauca leaf and stem showed excellent reducing activity and free radical scavenging activity. HPTLC fingerprinting, carried out in mobile phase, chloroform: toluene: ethanol (4: 4: 1, v/v) showed presence of florescent compound at 366 nm as well as UV active compound at 254 nm. GC-TOF-MS analysis revealed the predominance of diphenyl sulfone as major compound in G. glauca. Significant levels of n-hexadecanoic acid and octadecanoic acid were also present. Diosgenin (C27H42O3) and diosgenin (3á,25R) acetate were present as major phytoconstituents in the extracts of D. bulbifera. G. glauca and D. bulbifera contain significant amounts of phytochemicals with antioxidative properties that can be exploited as a potential source for herbal remedy for oxidative stress induced diseases. These results rationalize further investigation in the potential discovery of new natural bioactive principles from these two important medicinal plants.


Journal of Nanoparticles | 2013

Adiantum philippense L. Frond Assisted Rapid Green Synthesis of Gold and Silver Nanoparticles

Duhita G. Sant; Tejal R. Gujarathi; Shrikant R. Harne; Sougata Ghosh; Rohini Kitture; S. N. Kale; Balu A. Chopade; Karishma R. Pardesi

Development of an ecofriendly, reliable, and rapid process for synthesis of nanoparticles using biological system is an important bulge in nanotechnology. Antioxidant potential and medicinal value of Adiantum philippense L. fascinated us to utilize it for biosynthesis of gold and silver nanoparticles (AuNPs and AgNPs). The current paper reports utility of aqueous extract of A. philippense L. fronds for the green synthesis of AuNPs and AgNPs. Effect of various parameters on synthesis of nanoparticles was monitored by UV-Vis spectrometry. Optimum conditions for AuNPs synthesis were 1 : 1 proportion of original extract at pH 11 and 5 mM tetrachloroauric acid, whereas optimum conditions for AgNPs synthesis were 1 : 1 proportion of original extract at pH 12 and 9 mM silver nitrate. Characterization of nanoparticles was done by TEM, SAED, XRD, EDS, FTIR, and DLS analyses. The results revealed that AuNPs and AgNPs were anisotropic. Monocrystalline AuNPs and polycrystalline AgNPs measured 10 to 18 nm in size. EDS and XRD analyses confirmed the presence of elemental gold and silver. FTIR analysis revealed a possible binding of extract to AuNPs through –NH2 group and to AgNPs through C=C group. These nanoparticles stabilized by a biological capping agent could further be utilized for biomedical applications.


Advances in Experimental Medicine and Biology | 2010

Molecular Genetics of Biosurfactant Synthesis in Microorganisms

Surekha K. Satpute; Smita S Bhuyan; Karishma R. Pardesi; Shilpa S. Mujumdar; Prashant K. Dhakephalkar; Ashvini Mohnish Shete; Balu A. Chopade

Biosurfactant (BS)/bioemulsifier (BE) produced by varied microorganisms exemplify immense structural/functional diversity and consequently signify the involvement of particular molecular machinery in their biosynthesis. The present chapter aims to compile information on molecular genetics of BS/BE production in microorganisms. Polymer synthesis in Acinetobacter species is controlled by an intricate operon system and its further excretion being controlled by enzymes. Quorum sensing system (QSS) plays a fundamental role in rhamnolipid and surfactin synthesis. Depending upon the cell density, signal molecules (autoinducers) of regulatory pathways accomplish the biosynthesis of BS. The regulation of serrawettin production by Serratia is believed to be through non ribosomal peptide synthetases (NRPSs) and N-acylhomoserine lactones (AHLs) encoded by QSS located on mobile transposon. This regulation is under positive as well as negative control of QSS operon products. In case of yeast and fungi, glycolipid precursor production is catalyzed by genes that encode enzyme cytochrome P450 monooxygenase. BS/BE production is dictated by genes present on the chromosomes. This chapter also gives a glimpse of recent biotechnological developments which helped to realize molecular genetics of BS/BE production in microorganisms. Hyper-producing recombinants as well as mutant strains have been constructed successfully to improve the yield and quality of BS/BE. Thus promising biotechnological advances have expanded the applicability of BS/BE in therapeutics, cosmetics, agriculture, food, beverages and bioremediation etc. In brief, our knowledge on genetics of BS/BE production in prokaryotes is extensive as compared to yeast and fungi. Meticulous and concerted study will lead to an understanding of the molecular phenomena in unexplored microbes. In addition to this, recent promising advances will facilitate in broadening applications of BS/BE to diverse fields. Over the decades, valuable information on molecular genetics of BS/BE has been generated and this strong foundation would facilitate application oriented output of the surfactant industry and broaden its use in diverse fields. To accomplish our objectives, interaction among experts from diverse fields likes microbiology, physiology, biochemistry, molecular biology and genetics is indispensable.


International Journal of Microbiology | 2012

An MFS Transporter-Like ORF from MDR Acinetobacter baumannii AIIMS 7 Is Associated with Adherence and Biofilm Formation on Biotic/Abiotic Surface

Praveen K. Sahu; Pavithra S. Iyer; Madhumita B. Gaikwad; Sheetal C. Talreja; Karishma R. Pardesi; Balu A. Chopade

A major facilitator superfamily (MFS) transporter-like open reading frame (ORF) of 453 bp was identified in a pathogenic strain Acinetobacter baumannii AIIMS 7, and its association with adherence and biofilm formation was investigated. Reverse transcription PCR (RT-PCR) showed differential expression in surface-attached biofilm cells than nonadherent cells. In vitro translation showed synthesis of a ~17 kDa protein, further confirmed by cloning and heterologous expression in E. coli DH5α. Up to 2.1-, 3.1-, and 4.1- fold biofilm augmentation was observed on abiotic (polystyrene) and biotic (S. cerevisiae/HeLa) surface, respectively. Scanning electron microscopy (SEM) and gfp-tagged fluorescence microscopy revealed increased adherence to abiotic (glass) and biotic (S. cerevisiae) surface. Extracellular DNA(eDNA) was found significantly during active growth; due to probable involvement of the protein in DNA export, strong sequence homology with MFS transporter proteins, and presence of transmembrane helices. In summary, our findings show that the putative MFS transporter-like ORF (pmt) is associated with adherence, biofilm formation, and probable eDNA release in A. baumannii AIIMS 7.

Collaboration


Dive into the Karishma R. Pardesi's collaboration.

Top Co-Authors

Avatar

Balu A. Chopade

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Sougata Ghosh

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Amit M. Jabgunde

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Dilip D. Dhavale

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Mehul Ahire

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Supriya Yavankar

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Jayesh R. Bellare

Indian Institute of Technology Bombay

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. N. Kale

Defence Institute of Advanced Technology

View shared research outputs
Top Co-Authors

Avatar

Sumersing Patil

Savitribai Phule Pune University

View shared research outputs
Researchain Logo
Decentralizing Knowledge